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41.Abstract] N [2. Understanding Sequencing Efficiency] R

Target enrichment is used in a wide range of applications, from cancer exome o _ _ _ o _ _ _
sequencing to viral detection. Generation of high performance panels is an involved process An .effllc!ent target enrichment aims at Here we examine how thlmlzatloq pf uniformity and off- On-target rate required for panel 2 to
and production variability. Here we describe the experiments and analysis undertaken to bases, ~ while  minimizing  overall in real-life applications minimizing uniformity will often Fzr:-aol given varying levels of uniformity
improve our design principles for high-efficiency target enrichment. Our design objective is sequencing required to achieve that have a larger impact than minimizing off-target. For e <3 . \ 1o
quantitative optimization of key capture performance metrics. Towards that goal we coverage. In the commonly used Picard example, Table 2.1 shows that to match a capture with . ' ' ' '
complementarity, target context, thermodynamics and our production process. We target enrichment: uniformity and off- Useful /, Over Under . Offtarget Would need 92% on-target, while capture with fOId'o80‘1-9
show that our design process results in high performance first-pass panels, and that for target rate (Figure 2.1). Quantitative data sequencing sequencing will need to exceed the theoretical maximum (>100%). 1.5/ 70% 61% 70% 79% 89% | Table 21 Equilibium Points for Off-target and
particularly difficult custom panels we are able to improve the performance through our understanding of these metrics, and Uniformity Quantitative Impact. The table shows interplay
. . . . thelr Inter Ia |S essentlal to evaluatlon 17I70¢y 54cy 620/ 700/ 78(y between Uniformity and On-target rate (defined as 1-
DeS|gn—BU|Id—Test—Learn (DBTL) CyC|e approach. Flnally, we show how our panel deS|gn piay, Figure 2.1 Sources of Sequencing Inefficiency. lllustration of sequencing uniformity and off-target. C; indicates the . - 0 0 0 0 PCT_OFF_BAIT). Values are required on-target rate to
principles and data can be combined to address current and emerging target enrichment of panel performance and thus to robust desired coverage, required for meaningful interpretation. Lack of uniformity and off-target are main sources of “wasted” account for differences in uniformity, with panel 1 on-target
icati panel design sequencing effort. 1.9/70% 48% 55% 63% 70% rate = 70%. Performance equivalence was defined as 80%
\appllcatlons. y K . ) of bases reach predetermined coverage threshold. /
3. First Pass Design Performance . [4. Improving Capture Uniformity for Custom Use Cases } \
A Design-Build-Test-Learn (DBTL Probes can be designed and balanced A standalone custom panel containin A | C 16- E 10 - A spike-in custom panel (added content | C 1.61 Fold 80 g 67 AT Dropout
g Des| _ _ 9 200 Fold 80 AT Dropout . 10
strategy was implemented towards esign based on iterative datasets to  roughly 13,000 probes was 220,42 e | .| to the exome) containing roughly R2=0.4 15 51
developing a framework for Y — reproducibly generate uniform capture  rebalanced. This panel initially showed & 150, | - 250,000 probes  was also 8 14 4
generating  reproducibly  high- "= = l panels on a first try (above). However, a slight GC bias that was remedied with % - 61 rebalanced. This panel initially showed 2 - 13 5.
performing panels (Figure 3.1). L _ assumptions imbedded in our balancing  resynthesis ~of a  rebalanced & 100 . 4 a major GC bias that was remedied with 5 12 2.
This iterative learnin approach Learn Build a|gorithms may not fa|thfu||y represent panel_ Based on HS metrics we see this C_‘é.') 0| Zgg ' )] resyntheS|S of a. rebalanced . panel. ‘_m’ 4 3000 - 1
requires  each steg to  be experimental conditions of custom or effect is most prominent on the £ 10 1.19 - !Based on HS metrics we see this effect g 2 1000 - - —
peqrformed ith fepro ducible . ;i — non-standard panels. In order to coverage of all target regions (30x 0 , . , ‘ | 1.0 | R 0. | R is most promlnent on the coverage of all 0 1.0. | m 0l | m
- - . address this, balancing can be custom  coverage) and AT dropout biases 0.0 02 04 06 08 10 target regions (20x coverage) and 00 02 04 06 08 10
results towards building on results | x————-6-- . : : Fraction GC uniformity (Figure 4.2). Fraction GC
of previous iterations The A addressed by applying the same (Figure 4.1). y (Fig
reproducibility  and  expected meorefjcal straregies used 1o iniialy B_ 200 D 1001 Target>30X  F 191 GC Dropout 10 i, D100 Target>20X  F10) GCDropout
performance of both the build and p ﬁs'g f;_g_ yt unl cap g ' » = R2=0.01 0.5 0.8- __ 8 ' 0.951 0.8
test steps of the DBTL system is allows efricient sequencing by a wide- 5 120 ' c S c
. : range of applications with lower 2 S 0.6- T 6 S 0.6
shown. The reproducibility data is technical risk 5 100 " S 0.90 04 s s00  © 0.90 04
shown for a representative 800 kb | = ‘ o = o Figure 4.2 Spike-In Panel Rebalancing. A,B) Base calls ‘_% 4 4000 I o
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. , asecalls overlapping a probe calculated using 100 % C- £
probes.. Replicates were Figure 3.1 Design-Build-Test-Leam: Workflow of design-build-testieam strategy demonstrated on two panel types — a BEDTools versus probe GC% C-F) Key Picard | 0 el 0.0 Rebalanced (R) panels, calculated using minimum mapping 0 | | | | 0.80 0.0.
syntheS|zed 1 month apart. that was used to generate process for designing a target enrichment system. custom panel and spike-in panel of two performance metrics of Initial (I) and Rebalanced (R) | R | R quality of 20. 0.0 0.2 0.4 0.6 0.8 1.0 | R
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Build: An NGS quality control step is performed on every custom panel generated where

expociod and the. probe conteht and. representation reiects the. mtended. design - [5_ Using 30,000 Probes to Understand How Mismatches Affect Capture ] ~

Reproducibility between two panels based on NGS probe counting is high and can support
DBTL (Figure 3.2). - | A B c D c . G
R B, Figure 3.2 Lot to Lot Hybridization capture tolerates some mismatches and a probe will ~ Our data suggests that distribution of mismatches 2.0{ 3 ~|20{5 2.0{10 2.0{45 2.0120 20130 2.0{50
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Following the application of learning and design (see below) the results of this learning was \

used to design high-performance panels in a first attempt. Six panels ranging from 16 kb to 4 [6 i Flne-Tu n | ng PrObe SpeC|f|C|ty fOr DOWﬂ Stream Appl ICatIOnS J I

13 Mb were synthesized and shown to have high coverage metrics (30x coverage) which was o
made possible by a multivariate optimization of key metrics (Figure 3.4). A /o Off-target removed 40
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detecting intragenomic homology. The problem with this
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R 137 Section 5).
% = ) Figure 6.1 Experimentally Driven Adaptive Designs. Figure 6.2 Modeling Adaptive Designs 1st pass designs and Figure 6.3 Adaptive Designs Without Experimental Data. Twist's capture model eliminates the guesswork associated with
I I - o _ _ _ One very powerful approach to eliminate the guess work other design optimization tasks would strongly benefit if running bait filtering allowing for adaptive-like designs without running experiments. A) The graph shows the level off target predicted by
1.2 - In addition to ellmlnatlng the guesswork out of |nCIud|ng in tuning filtering stringency is by the use of adaptive experiments could be avoided. To do this we have combined a our model compared to that measured by experimentation (axes) and the fraction out of the total number of baits required in
specific regions among targets and allowing fined grained designs, where experimental results from a 1st pass variety of DNA sequence and genomic structural features with each case to achieve it. B) The graph shows results analogous to those in Fig. 6.1, for a custom design against a particularly
“Hybrid capture was performed using several target enrichment : : : : L : design, are used to determine sequences that should be experimental data to build a predictive model of capture hard set of target regions, various levels of stringency, and the effectiveness of bait removal based on our model.*
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mapping quality of 20; N = 2. 800KDb, 3 probes and ~4% of probes removed).
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