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1. Abstract

Learn more about the new Twist Exome and Custom Target Enrichment solutions at  twistbioscience.com/products/ngs
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6. Fine-Tuning Probe Specificity for Downstream Applications 

Target enrichment is used in a wide range of applications, from cancer exome
sequencing to viral detection. Generation of high performance panels is an involved process
that needs to take into account multiple factors, such as GC, sequence content, panel size
and production variability. Here we describe the experiments and analysis undertaken to
improve our design principles for high-efficiency target enrichment. Our design objective is
quantitative optimization of key capture performance metrics. Towards that goal we
assessed, both computationally and experimentally, multiple factors: sequence
complementarity, target context, thermodynamics and our production process. We
show that our design process results in high performance first-pass panels, and that for
particularly difficult custom panels we are able to improve the performance through our
Design-Build-Test-Learn (DBTL) cycle approach. Finally, we show how our panel design
principles and data can be combined to address current and emerging target enrichment
applications.

Parameters that can affect target enrichment are sequence
properties and genomic structure, where repeats, low
complexity sequences, and other features can lead to
uneven capture and off target.

Twist's TE system has been engineered to achieve extremely
high uniformity, and off target capture can in principle be
addressed by varying levels of stringency with which
problematic sequences are avoided.

However, developing a good way of controlling stringency is
not straightforward. A common strategy is to provide the
option to filter designs by a variety of elements such as those
identified by repeatmasker and different programs for
detecting intragenomic homology. The problem with this
heuristic approach is the uncertainty of its effects, often
leading to the removal of probes that do not affect off target
while missing others that will contribute significantly to the
level of promiscuous capture (see Mismatch study in
Section 5).

In addition to eliminating the guesswork out of including
specific regions among targets and allowing fined grained
stringency control, enabling informed design decisions, Twist
methods have a variety of design optimization applications
including minimal filtering and 1st pass optimizations in a
variety of TE applications from genotyping to CNV detection.

Figure 6.1 Experimentally Driven Adaptive Designs.
One very powerful approach to eliminate the guess work
in tuning filtering stringency is by the use of adaptive
designs, where experimental results from a 1st pass
design, are used to determine sequences that should be
removed with great precision (Fig 6.1). Examples of
improvements after a single pass adaptive design for
moderate and aggressive off target reduction in panels
with challenging target regions (respectively 37Kb and
800Kb, 3 probes and ~4% of probes removed).

Figure 6.2 Modeling Adaptive Designs 1st pass designs and
other design optimization tasks would strongly benefit if running
experiments could be avoided. To do this we have combined a
variety of DNA sequence and genomic structural features with
experimental data to build a predictive model of capture
performance (Fig. 6.2).

An efficient target enrichment aims at
maximizing coverage of most target
bases, while minimizing overall
sequencing required to achieve that
coverage. In the commonly used Picard
pipeline two metrics reflect efficiency of
target enrichment: uniformity and off-
target rate (Figure 2.1). Quantitative
understanding of these metrics, and
their interplay, is essential to evaluation
of panel performance and thus to robust
panel design.

Table 2.1 Equilibrium Points for Off-target and
Uniformity Quantitative Impact. The table shows interplay
between Uniformity and On-target rate (defined as 1-
PCT_OFF_BAIT). Values are required on-target rate to
account for differences in uniformity, with panel 1 on-target
rate = 70%. Performance equivalence was defined as 80%
of bases reach predetermined coverage threshold.

4. Improving Capture Uniformity for Custom Use Cases
Probes can be designed and balanced
based on iterative datasets to
reproducibly generate uniform capture
panels on a first try (above). However,
assumptions imbedded in our balancing
algorithms may not faithfully represent
experimental conditions of custom or
non-standard panels. In order to
address this, balancing can be custom
addressed by applying the same
theoretical strategies used to initially
design highly uniform capture. This
allows efficient sequencing by a wide-
range of applications with lower
technical risk.
This rebalancing approach is
demonstrated on two panel types – a
custom panel and spike-in panel of two
sizes.

Figure 4.1 Standalone Capture Panel Rebalancing.
A,B) Basecalls overlapping a probe calculated using
BEDTools versus probe GC% C-F) Key Picard
performance metrics of Initial (I) and Rebalanced (R)
panels, calculated using minimum mapping quality of
20.*
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3. First Pass Design Performance
A Design-Build-Test-Learn (DBTL)
strategy was implemented towards
developing a framework for
generating reproducibly high-
performing panels (Figure 3.1).
This iterative learning approach
requires each step to be
performed with reproducible
results towards building on results
of previous iterations. The
reproducibility and expected
performance of both the build and
test steps of the DBTL system is
shown. The reproducibility data is
shown for a representative 800 kb
panel consisting of roughly 7,400
probes. Replicates were
synthesized 1 month apart.

Figure 3.1 Design-Build-Test-Learn: Workflow of design-build-test-learn strategy
that was used to generate process for designing a target enrichment system.

Figure 4.2 Spike-In Panel Rebalancing. A,B) Base calls
overlapping a probe calculated using BEDTools versus probe
GC% C-F) Key Picard performance metrics of Initial (I) and
Rebalanced (R) panels, calculated using minimum mapping
quality of 20. *

Build: An NGS quality control step is performed on every custom panel generated where
probe representation is measured post-production. This ensures the process completed as
expected and the probe content and representation reflects the intended design.
Reproducibility between two panels based on NGS probe counting is high and can support
DBTL (Figure 3.2).

A standalone custom panel containing
roughly 13,000 probes was
rebalanced. This panel initially showed
a slight GC bias that was remedied with
resynthesis of a rebalanced
panel. Based on HS metrics we see this
effect is most prominent on the
coverage of all target regions (30x
coverage) and AT dropout biases
(Figure 4.1).
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Figure 3.4 First Pass Capture Performance*: Information of
capture performance of 6 different panels. A) Description of panels
and size. B) Uniformity (Fold 80) C) 30x Coverage performance of
each panel as defined by Picard HS metrics.

Here we examine how optimization of uniformity and off-
target affects target enrichment efficiency, and show that
in real-life applications minimizing uniformity will often
have a larger impact than minimizing off-target. For
example, Table 2.1 shows that to match a capture with
fold-80=1.3 and 70% on-target, capture with fold-80=1.7
would need 92% on-target, while capture with fold-80=1.9
will need to exceed the theoretical maximum (>100%).

2. Understanding Sequencing Efficiency

A spike-in custom panel (added content
to the exome) containing roughly
250,000 probes was also
rebalanced. This panel initially showed
a major GC bias that was remedied with
resynthesis of a rebalanced panel.
Based on HS metrics we see this effect
is most prominent on the coverage of all
target regions (20x coverage) and
uniformity (Figure 4.2).
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5. Using 30,000 Probes to Understand How Mismatches Affect Capture
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Figure 6.3 Adaptive Designs Without Experimental Data. Twist's capture model eliminates the guesswork associated with
bait filtering allowing for adaptive-like designs without running experiments. A) The graph shows the level off target predicted by
our model compared to that measured by experimentation (axes) and the fraction out of the total number of baits required in
each case to achieve it. B) The graph shows results analogous to those in Fig. 6.1, for a custom design against a particularly
hard set of target regions, various levels of stringency, and the effectiveness of bait removal based on our model.**Hybrid capture was performed using several target enrichment

panels (Twist Bioscience) using 500 ng of gDNA (NA12878; Coriell)
per single-plex pool following manufacturer’s recommendations.
Sequencing was performed with a NextSeq 500/550 High Output v2
kit to generate 2x76 paired end reads. Data was downsampled to
150x of target size and analyzed using Picard Metrics with a
mapping quality of 20; N = 2.

Figure 2.1 Sources of Sequencing Inefficiency. Illustration of sequencing uniformity and off-target. CD indicates the
desired coverage, required for meaningful interpretation. Lack of uniformity and off-target are main sources of “wasted”
sequencing effort.
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Figure 3.2 Lot to Lot
Variability From Build:
Each synthesis involves
amplification step. A
panel containing roughly
7,400 probes (800 kb)
was re-synthesized ~1
month apart (Lot1 and
Lot2), with two
amplification replicates
in each Lot (Replicate 1
and 2) A)
Reproducibility of probe
representation within
same synthesis,
different amplifications.
B) Reproducibility of
probe representation
between syntheses.

Figure 3.3 Lot to Lot
Variability From
Test: Data was
downsampled to
1500x of target size
and analyzed using
Picard Metrics with a
mapping quality of 20;
N = 2. A) Lot to lot
reproducibility capture
per probe.
B-E) Reproducibility
of probe target
enrichment
performance between
syntheses
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Hybridization capture tolerates some mismatches and a probe will
capture a range of sequences that are sufficiently similar to the perfect
target - with varying efficiency. Depending on the application, this may
be a desired property, or undesired hindrance. In either case
quantitative understanding of the effect of mismatches on capture is
important for optimizing probe design, and large scale data are
lacking. To examine the effects of number and distribution of
mismatches on capture efficiency we designed and synthesized two
panels, Control and Variant. The Control panel contained probes
selected from the Twist human exome panel that perfectly match the
human genome reference. The Variant panel contained the same
probes but with 1-50 mismatches distributed at random, or as one
continuous stretch. (Figure 5.1)

Figure 5.1 Experimental Design of Control and Variant Panels Each panel (Variant and Control)
contained 28,794 probes. In the control panel, the probes were designed to be complementary to their
targets. In the variant panel 1-50 mismatches (yellow) were introduced either randomly along the probe
(RND) or all together in a single continuous stretch (CONT). Also, 382 control probes without mismatches
were added to both panels for normalization (in grey), thus the Control and Variant pools contained a total
of 29,176 probes.

Figure 5.3 Effect of
Temperature on
Capture Efficiency
in the Presence of
Mismatches* Effect
of decreasing
hybridization
temperature on
capture efficiency of
probes with 15
mismatches
distributed either
randomly (RND) or in
a continuous stretch
(CONT) across the
probe.

Figure 5.4 Potential Applications:
Metagenomic and Bisulfide Capture
Efficiency prediction for the design of 450
whole genome Zika isolates from human
samples (A) and all CpG islands in the human
genome (B). A. Based on mismatch data we
predict our design would capture >98% of the
viruses with >90% efficiency B. Basic design
is not likely to capture most of the bisulfide
converted CpG island sequences (data
assumes 100% conversion and 100%
methylation). CpG islands were downloaded
from the UCSC annotation track for human
genome hg38 and designed using standard
Twist design practices. The distribution of C
nucleotides and CpG sites per probe suggests
that many of the probes would capture the
sequences only before bisulfite treatment, and
would need to be reengineering

Our data suggests that distribution of mismatches
is of paramount importance for capture efficiency:
for example probes with 50 mismatches arranged
in one continuous stretch capture as well as
probes with 10-15 mismatches distributed
randomly, while probes with 50 mismatches
distributed randomly were completely ineffective.
(Figure 5.2).
We also show that other factors such as GC,
length of perfect match and hybridization
temperature (Figure 5.3) modulate capture
efficiency in the presence of mismatches.

This data can be used to address applications,
like the capture of mixed metagenomic samples
and the capture of bi-sulfide treated gDNA
towards predicting pitfalls that require augmented
probe design (Figure 5.4).

Figure 5.2 Distribution of Mismatches is Paramount to Probe
Performance* Panels A–G depict the distribution of relative capture
efficiency for probes with a single mismatch (gray) and probes with
multiple mismatches (green lines; the number of mismatches is indicated
in the left top corner). Solid line depicts the distribution for probes with
randomly distributed mismatches (RND), and the dotted line indicates the
distribution for probes with continuous mismatches (CONT).

Test: An NGS target enrichment probe to probe performance was done to ensure
reproducible capture and testing of the built panel (Figure 3.3). The overall sequencing HS
metrics also showed high concordance between lots.
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Following the application of learning and design (see below) the results of this learning was
used to design high-performance panels in a first attempt. Six panels ranging from 16 kb to
13 Mb were synthesized and shown to have high coverage metrics (30x coverage) which was
made possible by a multivariate optimization of key metrics (Figure 3.4).
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