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INTRODUCTION

Next-generation sequencing (NGS) has become the technique of choice for variant detection in both 
research and clinical settings. Although the cost of sequencing is steadily decreasing, large-scale, 
whole genome sequencing is still prohibitively expensive, so investigations often focus on specific 
genes and loci using targeted sequencing (Dillon, et al. 2018). 

Targeted sequencing relies on enrichment of genomic regions of interest prior to sequencing. In 
exome sequencing, for example, biotinylated synthetic DNA probes are designed to hybridize to 
exon regions. Following hybridization with a genomic DNA sample, probes are purified to produce 
a sample that is enriched for the exon regions. Although target enrichment can reduce sequencing 
costs and make experiments more feasible and focused, it also introduces biases that compromise 
the efficiency of the sequencing effort (Goldfeder et al. 2016, Meynert et al. 2013, 2014).

While some inefficiency is unavoidable due to the stochastic nature of targeted NGS, much of it is 
inherent to the design and production of target enrichment probe panels (Warr et al. 2015). Some 
probes cross-hybridize to non-target regions, leading to “off-target” (non-specific) capture. Probe 
panels may also have imbalances in capture efficiency (lack of uniformity) that lead to over-enrichment 
of some targets and under-enrichment of others. To ensure high-confidence data, researchers must 
increase the amount of sequencing to boost coverage of areas with low read depth. This strategy, 
however, leads to over-sequencing of otherwise adequately covered regions, which in turn results in 
higher sequencing costs and reduced efficiency.

The extent of this “wasted sequencing” is reflected in the uniformity and on-target rate, two metrics 
that describe the overall efficiency of targeted sequencing. In this paper, we use ranges of on-target 
rate and uniformity typical of commercial exome kits to mathematically model the relative impacts 
of both metrics on overall efficiency. We demonstrate that, though most commercial probe panels 
cite only on-target rate in their specifications, uniformity has a more significant contribution to the 
efficiency of targeted sequencing.
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Figure 1. Read distribution. A. Read distribution in an ideal experiment, where all targets have specific and equal read depth, 
and non-target regions are free of reads. In this situation, CM=CD. B. Representation of a realistic distribution of coverage, 
where some targets are under-sequenced, others are over-sequenced, and off-target regions are also captured. 

EVALUATING SEQUENCING REQUIREMENTS

When designing a sequencing experiment, a fundamental task 
is to determine how many reads are required per sample for 
actionable data (read coverage). The answer determines the 
costs, feasibility, number of samples to include, and ultimately 
the study power to reach meaningful conclusions. Different 
applications require different read coverage: for example, 
whereas information from ten reads that align over a given 
position (10x coverage) may suffice for a call of germline 
variation in a research setting, this number would be inadequate 
for a confident call of somatic mutation in a clinical setting. We 
refer to the desired coverage as CD and the mean coverage 
actually observed in the experiment as CM.  

An ideal sequencing experiment would generate reads that 
are distributed equally and exclusively across target regions 

(perfect uniformity and on-target capture, respectively). The rest 
of the genome would be devoid of reads (Figure 1A). In this ideal 
scenario, sequencing efficiency would be 100%, and CM would 
equal CD. Non-uniform and off-target capture are inevitable, 
however, and they lead to variable coverage  
(Figure 1B). 

To ensure coverage of most targeted regions reaches CD, the 
amount of sequencing is often increased such that CM >> CD 
(Figure 1B). This strategy, however, wastes a considerable 
fraction of sequencing reads. The CM/CD ratio represents 
the amount over-sequencing needed to ensure a certain 
percentage of targets reach CD: the larger the ratio, the more 
over-sequencing will be required to get enough usable data. 
Optimizing the efficiency of targeted NGS, therefore, involves 
minimizing the CM/CD ratio without compromising results. 



TWIST BIOSCIENCE  | WHITE PAPER

3

UNIFORMITY AND THE FOLD-80 METRIC

Uniformity describes the read distribution along target regions 
of the genome. Uniform coverage reduces the amount of 
sequencing required to reach a sufficient depth of coverage 
for all regions of interest. Uniformity is a measure of the spread 
around the CM and is estimated from the mean and quantiles of 
the read distribution (Figure 2). 

A convenient metric for uniformity is the fold-80 base penalty 
(fold-80 for short). Calculated by the widely used Picard1 pipeline, 
fold-80 is the fold of additional sequencing required to ensure 
that 80% of the target bases achieve CM. For example, if one 
million reads produce a CM of 30x, a fold-80 of 2.0 means two 
million reads would be required to ensure that 80% of the 
targeted bases reach 30x coverage. A fold-80 of 1.4 would mean 
that increasing sequencing to 1.4 million reads would achieve the 
same goal. 

Assuming a normal distribution, fold-80 is proportional to the 
coefficient of variation (the ratio of the standard deviation to the 
CM) and is greater than 1.0 (a fold-80 of 1.0 would indicate perfect 
uniformity and no variance, Figure 1A). Higher fold-80 scores 
correspond to wider coverage distribution and low uniformity, 
and lower fold-80 scores indicate high uniformity (all target bases 
are sequenced with similar coverage). 

ON-TARGET RATE

On-target rate describes the percentage of sequencing data 
that maps to target regions; conversely, off-target rate refers to 
the sequencing data that maps to other regions (Figure 1B). It 
is typically expressed as the ratio of the number of sequenced 
bases covering the target regions to the total number of mapped 
bases output by the sequencer (Figure 3). Some off-target 
sequencing is inevitable; a considerable proportion of it is probe 
panel-specific and can be due to promiscuous hybridization. 
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Figure 2. Uniformity reflects distribution shape. Two different hypothetical 
read distribution profiles showing low (green) and high (gray) fold-80 scores and 
the relative abundance of reads mapping back to over- and under-sequenced 
regions. Lowering the fold-80 score (gray curve to green curve) both rescues 
under-sequenced regions and reduces the fraction of over-sequenced regions 
for more efficient read utilization. In reality, poor uniformity often shows less 
symmetric distributions.

Figure 3. On-target rate is the proportion of the sequencing effort that maps to 
targeted regions. In calculating on-target rate, the entire sequencing effort (∑ALL) 
is represented by the area under the sequencing curve, and the on-target area 
(∑On-Target) is represented by the green area. Here, off-target sequencing is indicated 
by the arrow.

 1  https://broadinstitute.github.io/picard/
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Figure 4. Effect of uniformity versus on-target rate on required depth of 
sequencing. Simulation results assuming desired coverage (CD) = 10x, normal 
distribution of coverage depth, and varying mean coverage (CM), on-target rate 
(0.8–1.0) and fold-80 (1.1–2.0). A. Simulated depth of coverage distributions with 
changing on-target rates but constant fold-80 and CM (1.4 and 30, respectively). 
Improvements in on-target rate increase the mean coverage, shifting the distribution 
to the right. B. Simulated depth of coverage distributions with changing fold-80 and 
constant on-target rate and CM (0.9 and 30 respectively). Improving (reducing) fold-
80 scores reduces coverage of over-sequenced targets and increases coverage of 
under-sequenced targets. C. Proportion of target bases covered at 10x or higher for 
changing on-target rates, fold-80 scores, and mean coverage. 

 2  �Normal distributions were used for an intuitive illustration of the concepts of on-target rate and uniformity. Though actual coverage distributions do not usually follow a 
normal distribution, the general conclusions of our analysis extend to the distributions typically observed in NGS (exact numerical values may be different).

RELATIVE IMPACTS OF OPTIMIZING UNIFORMITY AND 
ON-TARGET RATE

Uniformity (fold-80) and on-target rate both define the efficiency of 
targeted sequencing. But how much impact does each metric have? 

As long as library preparation conditions for the probe panel are 
consistent, on-target rates tend to vary only a little and can be 
considered a “tax” on the sequencing effort (Chilamakuri et al. 
2014). When uniformity is perfect (fold-80 is 1.0), the on-target 
rate and CM are inversely proportional. For example, assuming a 
desired coverage (CD) of 10x and perfect uniformity, an on-target 
rate of 80% would mean one should aim for a CM of 12.5x:

CM = CD / on-target rate = 10 / 0.8
CM = 12.5x 

Conversely, even small improvements in fold-80 can significantly 
improve efficiency. Improving uniformity reduces coverage 
of over-sequenced targets and increases coverage of under-
sequenced targets.

To examine the relative effects of on-target rate and uniformity, 
we simulated 3,003 normal distributions2 with varying uniformity, 
mean coverage, and on-target rates. Improving the on-target 
rate while maintaining constant uniformity (Figure 4A) shifts the 
coverage distribution toward higher mean (CM) values, increasing 
the proportion of bases covered above the desired coverage  
(CD). Improving fold-80 scores, as stated earlier, improves read 
utilization by both rescuing under-sequenced regions and 
reducing the fraction of over-sequenced regions (Figure 4B). In 
this case, although mean coverage (CM) values remain constant, 
the proportion of bases covered above the desired coverage 
(CD) increases. In both figures, the differences in the number 
of actionable bases are represented by the areas between the 
curves, below the CD.

Figure 4C illustrates the combined impacts of changing on-
target rates, fold-80 scores, and mean coverage. Each colored 
curve represents a different fold-80, and the width of the curve 
represents the percentage of actionable bases recovered when 
on-target rates are between 80% (bottom limit of each curve) and 
100% (top). In each curve, when CM is 30x, improving on-target 
rate from 80% to 100% — essentially eliminating all off-target 
sequencing — increases the fraction of actionable bases by 1–2%. 
In contrast, improving fold-80 from 1.7 to 1.4 increases this number 
more dramatically, by 5–6%. 

The data demonstrate that improvements to fold-80 scores 
(uniformity) have a much more significant impact on the efficiency 
of targeted NGS than do improvements to on-target rates, even if 
the off-target rate could be reduced to zero.
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CONCLUSIONS AND PERSPECTIVES

In targeted NGS, uniformity (fold-80) and on-target rate are 
important metrics for evaluating efficiency of the sequencing effort. 
These two metrics are largely intrinsic properties of the probe 
panels themselves, and optimizing them can reduce the amount of 
sequencing needed to obtain high-confidence data. 

Choosing the most efficient target enrichment system requires 
carefully weighing the actual range of uniformity and on-target rate 
offered. While on-target rate is important, we demonstrate here 
that improvements to fold-80 scores (uniformity) have a much more 
significant impact on the efficiency of targeted NGS.
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