

High Performance Multiplexed Target Enrichment Sequencing from FFPE Tissues

Richard Gant¹, Leonardo Arbiza¹, Kristin Butcher¹, Siyuan Chen¹, Hutson Chilton¹, Mark Consugar¹, Sabina Gude¹, Brenton Graham¹, Jim Laugharn², Jayne Simon², Ulrich Thomann², Christina Thompson¹, Martina Werner²

¹Twist Bioscience; ²Covaris, Inc.

1. Abstract

Library construction for Next Generation Sequencing (NGS) using formalin-fixed paraffin-embedded (FFPE) samples offers unique challenges in acquiring high-quality sequencing data due to wide distribution of sample quality. Differences in formalin fixation methods, storage conditions, and age lead to crosslinked and/or degraded nucleic acid and inconsistent extraction yields. Therefore, FFPE extraction and library construction methods must be carefully considered for target enrichment applications. In collaboration, Covaris and Twist Bioscience demonstrate a complete library preparation and target enrichment solution that generates ready-to-sequence multiplexed libraries directly from FFPE tissue of various qualities.

This workflow leverages the Covaris truXTRAC[®] FFPE total Nucleic Acid Plus Kit and AFA-TUBE[™] TPX shearing with the world-class performance of Twist Bioscience's Target Enrichment Solutions. Covaris, the Gold Standard for mechanical DNA shearing in NGS applications, offers pre-analytical products that leverage Adaptive Focused Acoustics[®] (AFA[®]) technology. In this FFPE-specific application, the Covaris truXTRAC FFPE total Nucleic Acid Plus Kit and AFA-TUBE[™] TPX shearing on the LE220-plus Focused-ultrasonicator enables full emulsification of paraffin and disaggregation of tissue for highly efficient nucleic acid extraction and generation of size-specific DNA libraries. With the Twist Bioscience Human Core Exome kit, the resulting libraries are indexed, pooled, and target enriched with uniquely optimized DNA probes to generate ready-to-sequence high quality multiplexed libraries.

Using the aforementioned workflow, results from processing numerous FFPE tissue types and qualities with KAPA Q305/Q41 qPCR ratios ranging from 0.34 to 0.02 are presented. With samples presenting Q305/Q41 ratios ≥ 0.05 , sequencing results of 8-plexed libraries demonstrate large improvements in general Picard metrics that include uniformity (Fold₈₀ < 1.8), sequencing depth (30X coverage $\geq 88\%$ with 150X down sampling), and duplication rates ($\leq 11\%$) when compared to similar published studies. These results demonstrate a validated solution for library preparation and targeted exome sequencing of FFPE samples that can be integrated into automated workflows. The truXTRAC kit and AFA[®] technology from Covaris generate size specific DNA libraries from FFPE samples that, when paired with Twist Bioscience's superior target enrichment workflow, deliver multiplexed libraries for high performance targeted sequencing.

2. Covaris AFA Technology

Mutation detection-based sequencing is becoming increasingly important in both research and the clinic. Sample preparation is recognized as the limiting factor for sensitivity and specificity of biomarker detection. Adaptive Focused Acoustics[®] (AFA[®]) is an advanced acoustic technology enabling the mechanical processing of samples by Focused-ultrasonicators. AFA employs highly controlled bursts of focused high-frequency acoustic energy to efficiently and reproducibly process samples in a temperature-controlled and non-contact environment. This focused and efficient delivery requires a minimal amount of energy input avoiding the adverse effects of excess energy such as damaging heat, experimental variability, and sample over-processing typical of ordinary sonicators.

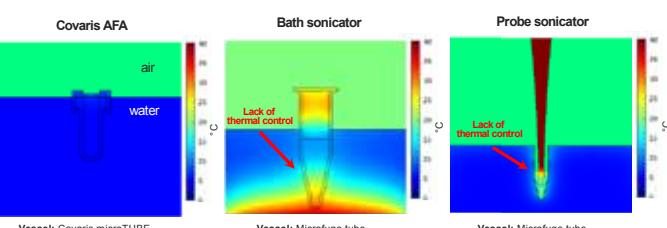


Figure 2.1. Illustrative representation of AFA technology.

Figure 2.2 Thermal profile comparison of AFA with probe and bath sonicators. Note the superior thermal profile around the sample with application of AFA.

3. Covaris FFPE Pre-Analytical Products

Figure 3.1 Sample types that can be extracted from FFPE samples with Covaris truXTRAC FFPE Family of pre-analytical products and AFA technology.

The truXTRAC FFPE total Nucleic Acid family of kits incorporates the patented AFA technology into the deparaffinization and nucleic acid extraction workflow (Figure 3.1). Fine-tuned AFA energy settings allow RNA and DNA isolation in parallel from the same sample (no splitting), thereby increasing yields and reducing heterogeneity due to separate sample input.

Due to the solvent-free deparaffinization and active extraction process, high quality nucleic acids in sufficient quantity for downstream NGS analysis are obtained. The truXTRAC FFPE total Nucleic Acid Plus Kit is designed for efficient and sequential extraction of total nucleic acids (RNA and DNA) from Formalin-Fixed, Paraffin-Embedded (FFPE) tissue samples using AFA (Figure 3.2).

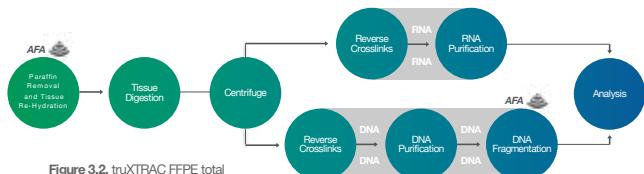


Figure 3.2. truXTRAC FFPE total Nucleic Acid Kit workflow.

4. Twist Target Enrichment Panels

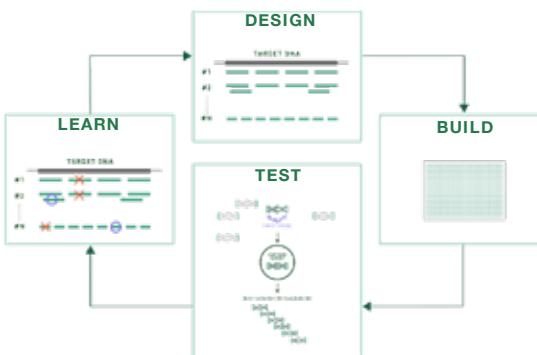


Figure 4.1 Design-Build-Test-Learn: Workflow of design-build-test-learn strategy that was used to generate probe for designing a target enrichment system.

A Design-Build-Test-Learn (DBTL) strategy was implemented towards developing a framework for generating reproducibly high-performing panels for target enrichment and sequencing (Figure 4.1).

This iterative learning approach requires each step to be performed with reproducible results towards building on results of previous iterations. The reproducibility and expected performance of both the **build** and **test** steps of the DBTL system is presented. The reproducibility data is shown for a representative 800 kb panel consisting of roughly 7,400 probes. Replicates were synthesized 1 month apart.

Build: An NGS quality control step is performed on every custom panel generated where probe representation is measured post-production. This ensures the process completed as expected and the probe content and representation reflects the intended design. Reproducibility between two panels based on NGS probe counting is high and supports DBTL (Figure 4.2).

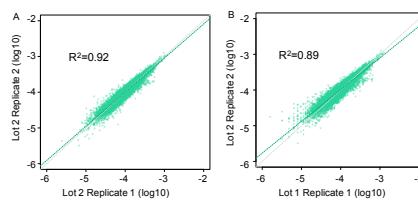


Figure 4.2 Lot to Lot Variability From Build: Each synthesis involves amplification step. A panel containing roughly 7,400 probes (800 kb) was re-synthesized 1 month apart (Lot1 and Lot2), with two amplification replicates in each Lot (Replicate 1 and 2). A) Reproducibility of probe representation within same synthesis, different amplifications. B) Reproducibility of probe representation between syntheses.

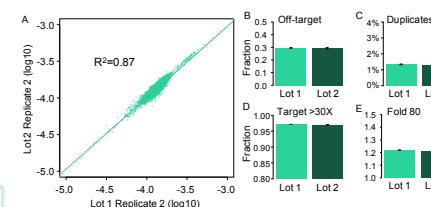


Figure 4.3 Lot to Lot Variability From Test: Data was downsampled to 150x of target size and analyzed using Picard Metrics with a mapping quality of 20; N = 2. A) Lot to lot reproducibility capture per probe. B-E) Reproducibility of probe target enrichment performance between syntheses.

Panel Name	Size (Mb)	Probes	Genes
Mitochondrial DNA	0.02	139	37
Cancer Hotspot	0.04	364	50
Neurodegenerative	0.6	6,024	118
Cancer + Hotspot	0.8	7,446	127
Actionable Cancer	1.7	19,661	522
Pan-Cancer	3.2	31,002	578
Exploratory Cancer	13.3	136,937	1,442

Following the optimization of each portion of the cycle the results were used to design high-performance panels in a first attempt. Six panels ranging from 0.02 Mb to 13 Mb were synthesized and shown to have high coverage metrics (30x coverage) which was made possible by a multivariate optimization of key metrics (Figure 4.4).

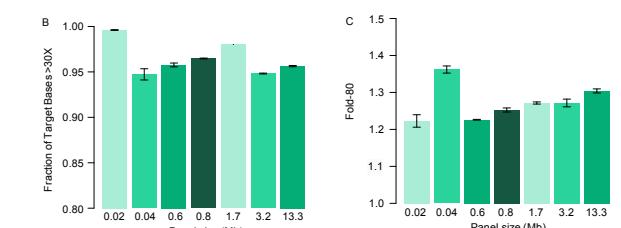
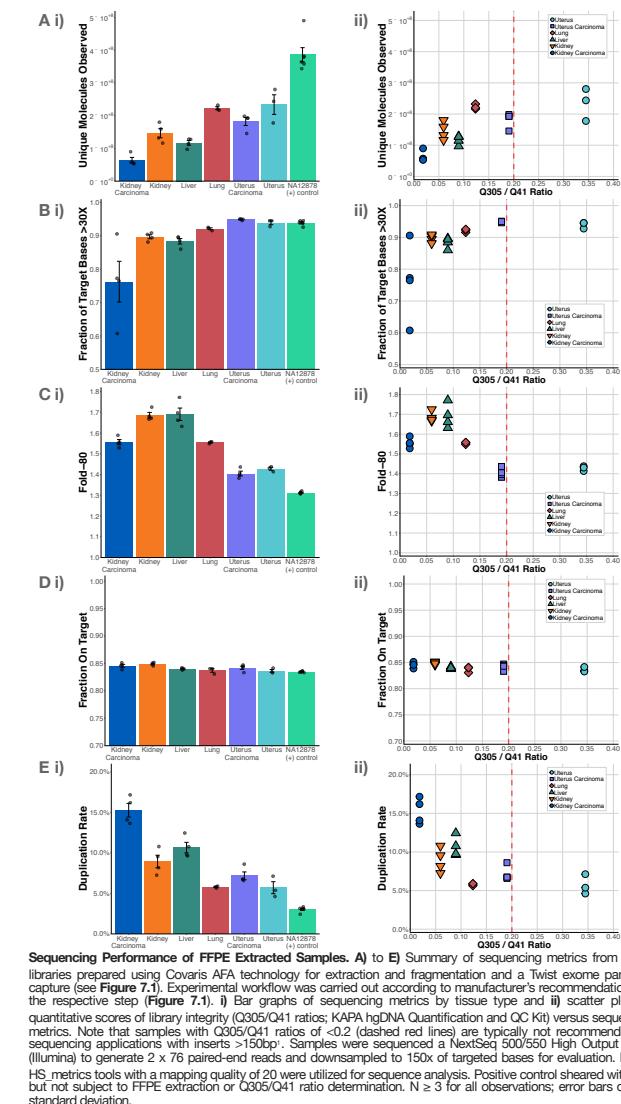



Figure 4.4 First Pass Capture Performance: Information of capture performance across 6 different panels. A) Description of panels and size. B) Uniformity (Fold 80) 30X Coverage performance of each panel as defined by Picard HS metrics. Hybrid capture was performed using several target enrichment panels (Twist Bioscience Human Core Exome, NA12878, Control) per singleplex pool following manufacturer's recommendations. Sequencing was performed with a NextSeq[®] 500/550 High Output v2 kit (Illumina[®]) to generate 2x76 paired end reads. Data was downsampled to 150x of target size and analyzed using Picard Metrics with a mapping quality of 20; N = 2.

Sequencing Performance of FFPE Extracted Samples. A) to E) Summary of sequencing metrics from gDNA libraries prepared using Covaris AFA technology for extraction and fragmentation and a Twist exome panel for capture (see Figure 7.1). Experimental workflow was carried out according to manufacturer's recommendations for the respective step (Figure 7.1). i) Bar graphs of sequencing metrics by tissue type and ii) scatter plots of quantitative scores of library integrity (Q305/Q41 ratios; KAPA hgDNA Quantification and QC Kit) versus sequencing metrics. Note that samples with Q305/Q41 ratios < 0.2 (dashed red line) are typically not recommended for sequencing applications with inserts $> 150\text{bp}$. Samples were sequenced a NextSeq[®] 500/550 High Output v2 kit (Illumina[®]) to generate 2 x 76 paired-end reads and downsampled to 150x of targeted bases for evaluation. Picard HS metrics tools with a mapping quality of 20 were utilized for sequence analysis. Positive control sheared with AFA but not subject to FFPE extraction or Q305/Q41 ratio determination. N ≥ 3 for all observations; error bars denote standard deviation.

8. Summary

- Covaris truXTRAC products and AFA[®] technology enable high quality extraction and shearing of DNA from FFPE samples.
- Twist target enrichment workflows and panels provide reliable multiplex performance across a wide range of panel sizes.
- Samples with KAPA QQC Q305/Q41 ratios of < 0.2 are typically binned as 'low-quality' and not suitable for sequencing.
- Combining Covaris AFA[®] FFPE extraction products and AFA-TUBE[™] TPX shearing with Twist library creation and multiplex target enrichment allows for sequencing of challenging FFPE samples (Q305/Q41 ratios ≥ 0.05) with uniformity and 30X depth of coverage values that are currently unmatched in the literature for exome-sized target enrichment panels.
- Improved uniformity for sequencing of FFPE samples translates directly to more samples per lane and reduced sequencing costs for a desired depth of coverage.