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Total RNA sequencing provides a relatively unbiased view of the transcriptional state of a population of cells. However, Formalin-fixed paraffin-embedded A S B . —— .
most total RNA-seq experiments must contend with a large number of reads that are not helpful for gene-expression (FFPE) tissue is tissue that has been _— mm WTS mmm RNA exome 80(;_ mm WTS mmm RNA exome
analysis, including reads from highly abundant non-coding transcripts (like the 7SK RNA or ribosomal RNA), intronic reads preserved for histology. Although this 80% .
from pre-mRNA, or contaminating genomic DNA. Target enrichment provides a way to focus sequencing on the process damages nucleic acids, FFPE 60% 1 2.
informative parts of the genome, allowing for more sensitive detection of low-abundance transcripts, or for profiling only tissue is nonetheless often used for 40:/‘" -
specific genes of interest. RNA-seq because the samples are 22; o
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| | | | | | readily available as clinical specimens. - - - -
Here we present capture sequencing experiments using Twist’'s new RNA Exome panel, which uses a novel design As the RNA exome is able to C ercent incorrect strand D etedied sadiggenss
strategy to specifically target every protein-coding isoform in Gencode v41 Basic. Although the design natively targets the efficiently recover coding sequences zj e T — N =
transcriptome, our design strategy also places probes to minimize bias towards known isoforms and allow for discovery of from a library, we asked whether issues .y 16000
novel isoforms or fusion genes. We evaluate panel performance in expression quantification, showing that relative in FFPE tissue could be rescued by 29% 15000 -
transcript abundances are preserved after hybrid capture. This allows for accurate and reproducible quantification of exome capture. Our results indicate that 1% | 12000 |
transcripts that are present across many orders of magnitude. We show gains in sequencing efficiency from our targeted the RNA exome enriches equally 2; .
approach and demonstrate the ability to capture novel structural variants, such as RNA fusions common in cancers. efficiently in FFPE as in non-FFPE Ing long  100ng Ing long  100ng Ing 10ng  100ng Ing 10ng  100ng
Additionally, we discuss our bioinformatic approach to evaluating capture performance in RNA space and discuss specific samples (Figure 3A), while reducing FFPE UHR FFPE UHR
challenges in the analysis of RNA-seq experiments. In summary, we provide evidence that the Twist Targeted Enrichment duplicate rates (Figure 3B), reducing Figure 3: (A) Exonic rate (expression profiling efficiency) from FFPE and UHR RNA at mass inputs of 1ng, 10ng and
for Gene Expression solution is an effective way to efficiently profile gene expression and detect gene fusions. incorrect strand percent (Figure 3C), and | 00n9: (B) Percent duplication as determined from UMI and mapping position from FFPE and UHR RNA at mass

. . inputs of 1ng, 10ng and 100ng. (D) Percent of reads mapping to the incorrect strand from FFPE and UHR RNA at
increasing the number of detected genes mass inputs of 1ng, 10ng and 100ng. (B) Number of detected protein-coding genes and defined by GenCode from
(Figure 3D) compared to WTS. FFPE and UHR RNA at mass inputs of 1ng, 10ng and 100ng. In all cases, error bars represent SEM.
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Our first step in generating the RNA exome was One important application of RNA
to decide on both a content curation strategy and a 62696 genes and 252416 total transcripts in GenCode SequenCing particma”y o OnCOIogy A B
strategy for how we would design capture probes N . . | 0 | |

) . . appllcatlons, is differential expression. Breast tissue RNA Breast cancer RNA 5 Fold changes, 10ng mass input Fold changes, 100ng mass input
against a transcript. Content curation was Alth n ture g ntrod - : - : 8
performed using the GenCode gene definitions 19713 genes and 88858 transcripts in the fo_llowing categories: protein coding, _ Ol.Jg capture does m. o UCGI Some | | l l 5 ol R~2=0.927 o 1ol R7~2=0.924 ) 2

_ _ polymorphic pseudogene, protein coding LoF, translated processed bias into gene expression estimates T 3 )
(V41 on h938) - our aim was to focus our deS|gn on pseudogene, translated unprocessed pseudogene (Figure ZC) this bias is extremely g
the coding regions of protein-coding genes. To this . ’ 5 -
_ @ consistent for the same genes ‘ E

end, we pared down the total defined CDS space between runs. We thus asked whether i c
: : : . o 1 04
in GenCode to categories of genes that were either . . 5

. . . : ¢ . 19731 genes and 63220 transcripts, where transcripts are annotated as we could preserve differences in gene 10ng 100ng 10ng 100ng K o
proteln—codlng or with Strong evidence for COdmg GenCode Basic, MANE select, MANE clinical or Ensembl Canonical expression and recover similar S o7 ——- Equal fold-change || -5 -
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j ili i _‘ ﬂ workflows  (Figure 4B), but the Tumor/Normal differential expression calls FDR adjusted p-value, WTS Mass (ng)
straightforward tiling to the mature transcripts — J U increased read counts from capture P 9
(Figure 1C) but found that this had significant orovide better statistical power (Figure Figure 4: (A) Summary of differential expression experiment design. (B) Correlation of tumor/normal fold-change
probe redundancy and would likely select against C 4C d identifi that estimated from WTS (x-axis) to tumor/normal fold-change estimated from RNA exome capture (y-axis). (C)
novel isoforms or fusion transcripts, as it contains . )’_e.m \aentities more genes that are Comparison of false discovery rate (FDR) adjusted p-values from differential expression experiment in WTS and RNA

bes that boundari Einall significantly altered between the tumor exome capture comparing significance in each experiment. (D) Number of genes with FDR-corrected p-value <0.01 in
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tRNAs). With this desi finalized d Twist’ Figure 1: (A) Content curation process for the RNA exome. (B) Example of To determine whether our RNA capture is C 100% 100%

S)'_ _I IS design finallized, W_e usea Iwist's DNA-based tiling strategy, similar to what is adopted for most DNA-based able to detect novel fusions, we sequenced o e | '\ES (1ng)
DNA printing technology to synthesize our probes  exomes over two isoforms of an example gene. (C) Example of material containing two fusions common in solid E —10
using our standard target enrichment panel straightforward tiling of the transcript sequences with probes. (D) Example tumors (EML4—ALK and SLC34A2—ROS1). After § 60% A 60% 1 . 100
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Target capture is uniquely able to purify the T bct rRNA Expression Profiling Efficiency fusions across a range of mass conditions. in both WTS and RNA-exome capture.
subset of protein-coding genes. This design " - \ ,
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most exonic content (expression profiling . 4% - N Reference Standards (Horizon Discovery P/N HD784) was added to the Twist RNA-seq Library Preparation Kit. Prior to making libraries, FFPE
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a lower 3 bias and percent duplication rate — jj . Enrichment Standard Hybridization v2 Protocol with a 16-hour hybridization reaction time. Sequencing was performed with the lllumina NextSeq
(Figure ?A). o, — — Iy ___ I . platform and 76 bp paired-end reads.

Coding sequences (CDS’s) are generally the RNA exome WTS 3 counting RNA exome WTS 3 counting RNA exome = WTS 3 counting Analysis was performed by sampling FASTQ files to a fixed number of reads (10M pairs/20M reads unless otherwise specified). Alignment
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