

RNA Library Preparation with Twist Universal Adapter System

For use with the Twist NGS Workflow

This Twist RNA Library Preparation Protocol details all the necessary steps in converting RNA to double-stranded cDNA and preparing cDNA libraries using fragmentation and the Twist Universal Adapter System. The Twist Universal Adapter System consists of Twist Universal Adapters and Twist Unique Dual Indexed (UDI) Primers. This kit is also compatible with the Twist HT Universal Adapter System, which consists of Twist Universal Adapters and Twist HT UDI Primers. This manual details the steps for generating amplified indexed libraries needed for downstream target enrichment and sequencing on Illumina next-generation sequencing (NGS) systems. This protocol is optimized for use with Twist Target Enrichment Kits and should only be performed with reagents specified or their equivalents.

Twist NGS Workflow. The Twist Library Preparation Workflow is part of a complete NGS workflow that takes you from sample preparation to NGS sequencing and data analysis.

For Research Use Only. Not intended for use in diagnostic procedures.

DON'T SETTLE FOR LESS IN TARGETED SEQUENCING.

Get in touch at sales@twistbioscience.com or learn more at twistbioscience.com/products/ngs

PROTOCOL COMPONENTS

Please read the product packaging and storage recommendations carefully for each kit and store components as recommended immediately upon arrival.

CATALOG #	NAME	DESCRIPTION	STORAGE
TWIST RNA LIBRARY PREP KIT (FOR RNA LIBRARY PREPARATION)			
107060 (16 rxn) 107061 (96 rxn)	Twist RNA Library Prep Kit	<ul style="list-style-type: none"> • FFPE Repair Buffer • Fragmentation/Prime Buffer • RT-Enzyme • RT-Buffer • Second Strand Enzyme • Second Strand Buffer • Ligation Enzyme • Ligation Buffer • P5/P7 Primer Mix (10x) • Equinox Amplification Master Mix (2x) 	-20°C
107241 (16 rxn)	Twist Purification Beads, 16 Samples	DNA Purification Beads	2-8°C
107242 (96 rxn)	Twist Purification Beads, 96 Samples		
TWIST ADAPTERS (ORDERED SEPARATELY)			
101307 (16 rxn)	Twist Universal Adapter System TruSeq Compatible, 16 samples	<ul style="list-style-type: none"> • Twist Universal Adapters • Twist UDI Primers 	-20°C
101308 / 101309 / 101310 / 101311 (96 rxn)	Twist Universal Adapter System TruSeq Compatible, 96 Samples Plate A/B/C/D		
106390-106393, 106396, 106398-106400: 384 rxn, 96-well plate 106401-106408: 384 rxn, 384-well plate	Twist HT Universal Adapter System TruSeq Compatible	<ul style="list-style-type: none"> • Twist Universal Adapters • Twist HT UDI Primers 	-20°C

LEGAL

This document may contain references to other third-party resources such as sources of information, hardware or software, products, or services and/or web sites owned or licensed by third parties. Twist Bioscience does not control or take responsibility for any third-party resources, including, without limitation, the accuracy, reliability, copyright compliance, compatibility, performance, legality, or any other aspect of third-party resources. The inclusion of such resources in this document does not imply endorsement by Twist Bioscience of any third-party resources.

Certain processes described in this document may be subject to patent rights or licenses in local jurisdictions, including those owned or licensed by parties other than Twist Bioscience. Purchase of this product does not include a license to perform any such processes. Users of this product may, therefore, be required to obtain a patent license depending upon the particular application and country in which the product is used before performing such processes.

Twist Bioscience, the various Twist logos, and the Twist NGS logo used herein are trademarks of Twist Bioscience Corporation. All other trademarks are the property of their respective owners.

©2023 Twist Bioscience Corporation. All rights reserved.

INTENDED USE

This product is for research use only. This product is not intended for the diagnosis, prevention, or treatment of a disease or condition. Twist Bioscience assumes no liability regarding use of the product for applications in which it is not intended.

TABLE OF CONTENTS

Twist Library Preparation Protocol	1
Materials Supplied by User	5
General Notes and Precautions	6
Guidelines for Samples	7
Protocol Overview	8
Step 1: Fragmentation, cDNA Synthesis, End-repair, and dA-tailing	9
• FFPE Repair	10
• Prepare High-quality or Partially-degraded RNA	10
• Fragmentation	10
• 1st Strand Synthesis	11
• 2nd Strand Synthesis & dA-Tailing	12
Step 2: Ligate Twist Universal Adapters and Purify	14
• Ligate Twist Universal Adapters	14
• Purify	16
• 2nd Purify (Optional)	17
Step 2: PCR Amplify and Strand Select Using UDI Primers, Purify, and Perform QC	18
• Prepare the Thermal Cycler	18
• Perform the PCR	19
• Perform QC	20
Appendix A: UDI Sequences and Pooling Guidelines	22
Appendix B: HT UDI Adapter Sequences and Pooling Guidelines	24
Appendix C: Obtaining Alternative Insert Sizes	26

MATERIALS SUPPLIED BY USER

The following materials or their equivalent are required to generate libraries using the Twist RNA Library Preparation Kit and the Twist (HT) Universal Adapter System.

PRODUCT	SUGGESTED SUPPLIER
REAGENTS AND CONSUMABLES	
RNase-free water	—
Ethanol (200 Proof)	—
Molecular biology grade water	—
96-well compatible magnetic plate	Alpaqua, Permagen Labware
10 mM Tris-HCl pH 8	—
Thin-walled PCR 0.2-ml strip-tubes	Eppendorf
1 ml, 2 ml, 5 ml tubes (RNase-free)	Eppendorf
1.5-ml microcentrifuge tubes	VWR
96-well thermal cycling plates	Eppendorf
Qubit dsDNA Broad Range Quantitation Assay	Thermo Fisher Scientific
Qubit RNA Broad Range Assay Kit	Thermo Fisher Scientific
Agilent DNA 7500 Kit	Agilent Technologies
Agilent RNA 6000 Nano	Agilent Technologies
EQUIPMENT	
Pipettes and tips	—
Vortex mixer	—
Benchtop mini centrifuge for 0.2-ml tubes	—
Thermal cycler (96 well) with heated lid	—
Fluorometer (Qubit 3.0)	Thermo Fisher Scientific
2100 Bioanalyzer	Agilent Technologies

GENERAL NOTES AND PRECAUTIONS

Wear appropriate protective equipment (lab coat, gloves, and protective glasses or goggles) at all times when performing this protocol.

For best results, read this document before performing the protocol, and follow the provided instructions. Twist cannot guarantee the performance of the workflow if modifications are made to the protocol.

Test the compatibility of your thermal cycler and PCR tubes by incubating them at 95°C for up to 5 minutes to ensure the PCR tubes do not crack under heat and pressure. Adjust the tightness of the thermal cycler lid and/or use a spacer specific to the thermal cycler model.

GUIDELINES FOR SAMPLES

RNA SAMPLES

- This kit is compatible with both high- and low-quality samples, including those derived from FFPE.
- Use the Qubit RNA Broad Range Assay to accurately quantify input RNA.
- Assess total RNA quality via an electrophoretic method, such as Agilent BioAnalyzer.
- Reagents are compatible with total RNA mass inputs ranging from 1 ng to 1000 ng.
- Workflow performance can vary when using degraded samples. If using RNA derived from FFPE samples, an FFPE repair (Steps 1.1.1.A to 1.1.5.A) should be performed in order to enhance library quality.
- For FFPE-derived RNA, reduced adapter concentration and/or a second post-ligation purification is recommended to mitigate adapter-dimer carryover.

INPUT RNA PURITY

- RNA inputs should be free from contaminating DNA that may be carried over from extraction. If the total RNA contains DNA, remove the contamination by incubating with DNase I (not supplied with kit). Residual DNase I may interfere with library preparation, so it is important to ensure no residual enzyme remains in the sample.
- RNA should be suspended in RNase-free water and be free of salts (e.g. Mg²⁺ or guanidinium salts), chelating agents (e.g. EDTA or EGTA), and organics (e.g. phenol or ethanol).

RNA HANDLING

- To avoid RNase contamination, work in a laminar flow hood, if available, and keep all sample and reagent tubes closed unless in use. Wear gloves when handling reagents and preparing libraries. Change gloves and pipette tips if they come into contact with non-sterile surfaces.
- To avoid RNA degradation, store RNA in an RNase-free diluent and limit the number of sample freeze-thaw cycles.
- For technical support, contact customersupport@twistbioscience.com.

PROTOCOL OVERVIEW

This protocol begins with RNA and generates amplified, indexed libraries for subsequent target enrichment. Indexed libraries are compatible with Twist Standard Hybridization v2 or Twist Fast Hybridization target enrichment protocols. This protocol allows you to perform RNA library preparation (Steps 1-3) in 4 hours.

	RNA LIBRARY PREP WITH UNIVERSAL ADAPTERS	TIME
STEP 1	FFPE Repair Heat-treated sample(s)	35 minutes
	Fragmentation, cDNA Synthesis, End Repair, and dA-Tailing dA-tailed cDNA fragments	1 hour 25 minutes
STEP 2	Ligate Adapters and Purify cDNA libraries	55 minutes to 1 hour 25 minutes
STEP 3	Library Amplification and Strand Selection Amplified indexed libraries	1 hour

STEP 1**FRAGMENTATION, cDNA SYNTHESIS, END REPAIR, AND dA-TAILING**

Perform fragmentation of input RNA, cDNA synthesis, and subsequent end repair and dA-tailing to generate dA-tailed DNA fragments.

NOTE: Perform FFPE Repair (Step 1.1.1.A to 1.1.5.A) if using FFPE-derived RNA, otherwise skip to Step 1.1.1.B.

Reagents Required

- RNA Sample
- RNase-free water
- From the Twist RNA Library Prep Kit:
 - FFPE Repair Buffer (for FFPE-derived RNA samples only)
 - Fragmentation/Prime Buffer
 - RT-Buffer
 - RT-Enzyme
 - Second Strand Buffer
 - Second Strand Enzyme

Before You Begin

- Thaw by placing on ice, vortex to ensure the reagent is fully mixed:
 - FFPE Repair Buffer (for FFPE-derived RNA samples only)
 - Fragmentation/Prime Buffer
 - RT-Buffer (protect from direct sunlight)
 - Second Strand Buffer
- Place on ice:
 - RT-Enzyme
 - Second Strand Enzyme

FFPE REPAIR

1.1.1.A

Dilute input FFPE-derived RNA on ice to 11 µl using RNase-free water and add 4 µl of FFPE Repair Buffer.

1.1.2.A

Pipette a minimum of half the total volume up and down 10 times to ensure complete mixing. Pulse-spin to ensure all of the solution is at the bottom of the sample plate or tube(s) and place on ice.

1.1.3.A

Program a thermal cycler with the following conditions. Set the temperature of the heated lid to 105°C.

STEP	TEMPERATURE	TIME
1	70°C	30 min
2	4°C	HOLD

1.1.4.A

Place tubes in the thermal cycler and initiate the program.

1.1.5.A

After the thermal cycler program is complete, remove tubes from the thermal cycler, and place on ice. Proceed immediately to Fragmentation (Step 1.2).

PREPARE HIGH-QUALITY OR PARTIALLY-DEGRADED RNA

1.1.1.B

Prepare input RNA on ice in a total volume of 15 µl using RNase-free water and add to labeled 0.2 ml PCR tubes or PCR plate. Proceed immediately to Fragmentation (Step 1.2).

FRAGMENTATION

1.2

Program a thermal cycler with the following conditions. Use the Step 2 Incubation table below to select the conditions for fragmentation based on the quality of your RNA and target insert size. Set the temperature of the heated lid to 105°C. Start the program to pre-chill the thermal cycler.

STEP	TEMPERATURE	TIME
1	4°C	HOLD
2	Use the table to the right to select the time and temperature for the RNA quality used and target insert size	
3	12°C	HOLD

**Expected insert size guidelines are based on libraries generated with 100 ng of high-quality RNA, optimization may be required for other configurations. Lower fragmentation times and temperatures may facilitate longer insert sizes for partially degraded samples and higher mass inputs. See Appendix C for additional guidance.*

STEP 2 INCUBATION			
RNA QUALITY	RIN	EXPECTED INSERT SIZE	FRAGMENTATION CONDITION*
Intact	> 7	175 - 195 bp	80°C for 10 min
		160 - 180 bp	85°C for 10 min
		145 - 165 bp	90°C for 10 min
		120 - 140 bp	95°C for 10 min
Partially degraded	2 - 7	100 - 300 bp	85°C for 2-5 min
Degraded, non-FFPE	1 - 2	Dictated by RNA Quality	65°C for 1 min
FFPE	—	Dictated by RNA Quality	65°C for 1 min

1.3 To each sample from Step 1.1.5.A or 1.1.1.B, add 10 μ l of the Fragmentation/Prime Buffer on ice.

1.4 Pipette a minimum of half the total volume up and down 10 times to ensure complete mixing. Pulse-spin to ensure all of the solution is at the bottom the sample plate or tube(s) and immediately transfer to the pre-chilled thermal cycler.

1.5 Initiate steps 2 to 3 of the thermal cycler program (see table in Step 1.2).

1.6 When the thermal cycler program is complete and the sample block has returned to 12°C, proceed immediately to 1st Strand Synthesis.

1ST STRAND SYNTHESIS

NOTE: The RT-Buffer is photosensitive. Protect from direct sunlight while thawing and in use.

1.7 Program a thermal cycler with the following conditions. Set the temperature of the heated lid to 105°C. Start the program to pre-chill the thermal cycler.

STEP	TEMPERATURE	TIME
1	4°C	HOLD
2	25°C	10 min
3	42°C	15 min
4	70°C	15 min
5	4°C	HOLD

1.8 Prepare the 1st Strand Master Mix on ice as indicated below.

REAGENT	VOLUME PER REACTION*
RT-Buffer	9 μ l
RT-Enzyme	1 μ l

*Prepare a master mix for multiple reactions.

1.9 Vortex for 4 seconds. Pulse-spin to ensure all of the solution is at the bottom of the sample plate or tube(s) and place on ice.

1.10 Add 10 μ l of the 1st Strand Master Mix to each sample from Step 1.6 on ice.

1.11

Pipette a minimum of half the total volume up and down 10 times to ensure complete mixing. Pulse-spin to ensure all of the solution is at the bottom the sample plate or tube(s) and immediately transfer to the pre-chilled thermal cycler.

1.12

Initiate steps 2 to 5 of the thermal cycler program (see table in Step 1.7).

1.13

When the thermal cycler program is complete, place the samples on ice or leave in the thermal cycler at 4°C. Proceed immediately to 2nd Strand Synthesis and dA-Tailing.

2ND STRAND SYNTHESIS & dA-TAILING

1.14

Program a thermal cycler with the following conditions. Set the temperature of the heated lid to 80°C. Start the program to pre-chill the thermal cycler.

STEP	TEMPERATURE	TIME
1	4°C	HOLD
2	42°C	5 min
3	62°C	10 min
4	4°C	HOLD

1.15

Prepare the 2nd Strand Master Mix on ice as indicated below.

REAGENT	VOLUME PER REACTION*
Second Strand Buffer	14 µl
Second Strand Enzyme	1 µl

*Prepare a master mix for multiple reactions.

1.16

Vortex for 4 seconds. Pulse-spin to ensure all of the solution is at the bottom the sample plate or tube(s) and place on ice.

1.17

Add 15 µl of the 2nd Strand Master Mix to each sample from Step 1.13 on ice.

1.18

Pipette a minimum of half the total volume up and down 10 times to ensure complete mixing. Pulse-spin to ensure all of the solution is at the bottom the sample plate or tube(s) and immediately transfer to the pre-chilled thermal cycler.

1.19

Initiate steps 2 to 4 of the thermal cycler program (see table in Step 1.14).

NOTE: While the thermal cycler program is running, prepare the reagents for Step 2: Ligate Twist Universal Adapters and Purify (See Before You Begin).

1.20

When the thermal cycler program is complete and the sample block has returned to 4°C, remove the samples from the block and place them on ice.

PROCEED IMMEDIATELY TO STEP 2: LIGATE TWIST UNIVERSAL ADAPTERS AND PURIFY

STEP 2

LIGATE TWIST UNIVERSAL ADAPTERS AND PURIFY

Ligate Twist Universal Adapters to the dA-tailed cDNA fragments from Step 1 and purify to generate cDNA libraries ready for index introduction through amplification in Step 3.

Reagents Required

- dA-tailed cDNA fragments (from Step 1.20)
- Ethanol
- Molecular biology grade water
- 10 mM Tris-HCl pH 8.0
- From the Twist RNA Library Preparation Kit:
 - Ligation Buffer
 - Ligation Enzyme
- From the Twist Purification Beads, 16 Samples or Twist Purification Beads, 96 Samples kit:
 - DNA Purification Beads
- From the Twist (HT) Universal Adapter System:
 - Twist Universal Adapters (tube; utilized for all samples)

Before You Begin

- Thaw or place on ice:
 - Ligation Buffer
 - Ligation Enzyme
 - Twist Universal Adapters
- Freshly prepare 1.5 ml of 80% Ethanol per sample (for use in both Steps 2 and 3 of the protocol)
- Equilibrate DNA Purification Beads to room temperature for at least 30 minutes (for use in both Steps 2 and 3 of the protocol)

LIGATE TWIST UNIVERSAL ADAPTERS

2.1

Program a thermal cycler with the following conditions. Set the temperature of the heated lid to OFF. Start the program to pre-chill the thermal cycler.

STEP	TEMPERATURE	TIME
1	4°C	HOLD
2	20°C	15 min
3	4°C	HOLD*

**Place on ice following ligation to reduce adapter-dimer formation prior to purification.*

2.2

Vortex the thawed Ligation Buffer for 20 seconds to fully homogenize the solution, pulse-spin to ensure all solution is at the bottom of the tube and place on ice.

2.3

Prepare 5 μ l of adapter solution per sample using the volumes specified in the table below.

NOTE: Storing diluted adapter solutions for extended periods of time is not recommended.

⚠️ IMPORTANT: DO NOT use an unbuffered solution (e.g. molecular biology grade water) as a diluent.

RNA INPUT	HIGH-QUALITY AND PARTIALLY-DEGRADED RNA		FFPE-DERIVED RNA	
	UNIVERSAL ADAPTER VOLUME	10 mM TRIS-HCL, pH 8.0 VOLUME	UNIVERSAL ADAPTER VOLUME	10 mM TRIS-HCL, pH 8.0 VOLUME
1 ng	0.25 μ l	4.75 μ l	0.18 μ l	4.82 μ l
10 ng	2 μ l	3 μ l	1 μ l	4 μ l
100 ng	5 μ l	—	1 μ l	4 μ l
1000 ng	5 μ l	—	1 μ l	4 μ l

2.4

Add 5 μ l of appropriate adapter solution to each sample from Step 1.20.

2.5

Prepare the Ligation Master Mix on ice as indicated below.

REAGENT	VOLUME PER REACTION*
Ligation Buffer	40 μ l
Ligation Enzyme	5 μ l

*Prepare a master mix for multiple reactions.

2.6

Vortex for 4 seconds. Pulse-spin to ensure all of the solution is at the bottom the sample plate or tube(s) and place on ice.

2.7

Add 45 μ l of the Ligation Master Mix to each sample from Step 2.4 on ice.

2.8

Homogenize with moderate vortexing for 5 seconds or by pipetting a minimum of half the total volume up and down 10 times (avoid formation of bubbles). Pulse-spin to ensure all of the solution is at the bottom the sample plate or tube(s).

2.9

Place the sample plate or tube(s) in the thermal cycler. Initiate steps 2 to 3 of the thermal cycler program (see table in Step 2.1).

NOTE: While the thermal cycler program is running, prepare the reagents for Step 3: PCR Amplify and Strand Select Using UDI Primers, Purify, and Perform QC (see Before You Begin).

2.10

When the program is complete, proceed immediately to Purify.

PURIFY

2.11 Vortex the pre-equilibrated DNA Purification Beads until mixed.

2.12 Add 70 μ l (0.7X) of homogenized DNA Purification Beads to each sample from Step 2.10. Mix well by vortexing.

2.13 Incubate the samples for 5 minutes at room temperature.

2.14 Place the samples on a magnetic plate for 1 minute or until the supernatant is clear.

2.15 The DNA Purification Beads form a pellet, leaving a clear supernatant. Without removing the plate or tubes from the magnetic plate, remove and discard the supernatant.

2.16 Wash the bead pellet by gently adding 200 μ l of freshly prepared 80% ethanol (do not disturb the pellet). Incubate for 1 minute, then remove and discard the ethanol.

2.17 Repeat this wash once, for a total of two washes, while keeping the samples on the magnetic plate.

2.18 Carefully remove all remaining ethanol with a 10- μ l pipette, making sure not to disturb the bead pellet.
NOTE: Before pipetting, the bead pellet may be briefly spun to collect ethanol at the bottom of the plate or tube and returned to the magnetic plate.

2.19 Air-dry the bead pellet on the magnetic plate for 5 minutes or until the bead pellet is dry. Do not overdry the bead pellet.

2.20 Remove the plate or tubes from the magnetic plate and add 22 μ l 10 mM Tris-HCl pH 8 to each sample. Mix by pipetting until homogenized.

2.21 Incubate at room temperature for 2 minutes.

2.22 Place the plate or tubes on a magnetic plate and let stand for 3 minutes or until the beads form a pellet.

2.23 Transfer 20 μ l of the clear supernatant containing the ligated libraries to a clean thin-walled PCR 0.2-ml strip-tube or well of a 96-well thermal cycling plate, making sure not to disturb the bead pellet.

 SAFE STOPPING POINT: Samples can be frozen at -20°C.

2ND PURIFY (OPTIONAL)

NOTE: This is an optional step and only recommended when working with:
Low RNA mass input (e.g. 10 ng or less)

2.24 Vortex the pre-equilibrated room temperature DNA Purification Beads until mixed.

2.25 Add 20 μ l (1X) of homogenized DNA Purification Beads to each sample from Step 2.23. Mix well by vortexing.

2.26 Incubate the samples for 5 minutes at room temperature.

2.27 Place the samples on a magnetic plate for 1 minute or until the supernatant is clear.

2.28 The DNA Purification Beads form a pellet, leaving a clear supernatant. Without removing the plate or tubes from the magnetic plate, remove and discard the supernatant.

2.29 Wash the bead pellet by gently adding 200 μ l of freshly prepared 80% ethanol (do not disturb the pellet). Incubate for 1 minute, then remove and discard the ethanol.

2.30 Repeat this wash once, for a total of two washes, while keeping the sample(s) on the magnetic plate.

2.31 Carefully remove all remaining ethanol with a 10- μ l pipette, making sure not to disturb the bead pellet.

NOTE: Before pipetting, the bead pellet may be briefly spun to collect ethanol at the bottom of the plate or tube and returned to the magnetic plate.

2.32 Air-dry the bead pellet on the magnetic plate for 5 minutes or until the bead pellet is dry. Do not overdry the bead pellet.

2.33 Remove the plate or tubes from the magnetic plate and add 22 μ l 10 mM Tris-HCl pH 8 to each sample. Mix by pipetting until homogenized.

2.34 Incubate at room temperature for 2 minutes.

2.35 Place the plate or tubes on a magnetic plate and let stand for 3 minutes or until the beads form a pellet.

2.36 Transfer 20 μ l of the clear supernatant containing the ligated libraries to a clean thin-walled PCR 0.2-ml strip-tube or well of a 96-well thermal cycling plate, making sure not to disturb the bead pellet.

 SAFE STOPPING POINT: Samples can be frozen at -20°C.

PROCEED TO STEP 3: PCR AMPLIFY AND STRAND SELECT USING UDI PRIMERS, PURIFY, AND PERFORM QC

STEP 3**PCR AMPLIFY AND STRAND SELECT USING UDI PRIMERS, PURIFY, AND PERFORM QC**

Amplify the adapted cDNA libraries with Twist UDI Primers, purify them, and perform quality control (QC) analysis to complete the protocol.

Reagents Required

- Ligated, purified libraries (from Step 2.23 or 2.36)
- 80% Ethanol (from Step 2)
- Equilibrated DNA Purification Beads (from Step 2)
- 10 mM Tris-HCl pH 8.0
- From the Twist RNA Library Preparation Kit:
 - Equinox Amplification Master Mix (2X)
- If using the Twist Universal Adapter System:
 - Twist UDI Primers
- If using the Twist HT Universal Adapter System:
 - Twist HT UDI Primers

⚠️ IMPORTANT: Use of P5/P7 Primers (10X) tubes 107075, 107085 contained in the Twist RNA Library Prep Kit is not required. Using these primers with the Twist (HT) Universal Adapter System will result in a failed PCR amplification.

Before You Begin

- Thaw by placing on ice:
 - Equinox Amplification Master Mix (2X)
 - Twist UDI Primers or Twist HT UDI Primers (plate with single-use primers)

PREPARE THE THERMAL CYCLER**3.1**

Program a thermal cycler with the following conditions. Set the temperature of the heated lid to 105°C.

STEP	TEMPERATURE	TIME	NUMBER CYCLES
1 Initialization	98°C	45 seconds	1
2 Denaturation Annealing Extension	98°C	15 seconds	Use the table on the next page to select the number of cycles needed based on the mass input and RNA quality
	55°C	30 seconds	
	72°C	30 seconds	
3 Final Extension	72°C	1 minute	1
4 Final Hold	12°C	HOLD	—

RNA INPUT INTO LIBRARY PREPARATION	PCR CYCLE RECOMMENDATION*	
	HIGH-QUALITY AND PARTIALLY-DEGRADED RNA	FFPE-DERIVED RNA
1000 ng	7 - 8	7 - 8
100 ng	9 - 10	9 - 10
10 ng	10 - 11	12 - 13
1 ng	14 - 15	20 - 21

*Cycle number recommendations are a starting point for Twist target enrichment workflows and provide sufficient yield for use in 1-plex target enrichment. Cycle number should be modified for each sample type/application.

PERFORM THE PCR

3.2

Add 5 μ l of Twist UDI or Twist HT UDI Primer from the provided 96-well or 384-well plate to each of the cDNA libraries from Step 2.23 or Step 2.36 and mix well by pipetting.

NOTE: For index selection and pooling guidelines for downstream target enrichment and sequencing, refer to Appendix A or B depending on the adapter system being used.

3.3

Invert Equinox Library Master Mix (2X) 5 times before use.

NOTE: DO NOT VORTEX.

3.4

Add 25 μ l of Equinox Amplification Master Mix (2X) to the cDNA libraries from Step 3.2 and mix well by pipetting or vortex for 4 seconds.

3.5

Pulse-spin the sample plate or tube(s) and immediately transfer to the thermal cycler. Start the program (see table in Step 3.1).

3.6

Remove the sample(s) from the block when the thermal cycler program is complete. Proceed to Purify.

PURIFY

3.7

Vortex the pre-equilibrated DNA Purification Beads until mixed.

3.8

Add 50 μ l (1X) of homogenized DNA Purification Beads to each sample from Step 3.6. Mix well by vortexing.

3.9

Incubate the samples for 5 minutes at room temperature.

3.10

Place the samples on a magnetic plate for 1 minute or until the supernatant is clear.

3.11

The DNA Purification Beads form a pellet, leaving a clear supernatant. Without removing the plate or tubes from the magnetic plate, remove and discard the supernatant.

3.12 Wash the bead pellet by gently adding 200 μ l freshly prepared 80% ethanol (do not disturb the pellet), incubate for 1 minute, then remove and discard the ethanol.

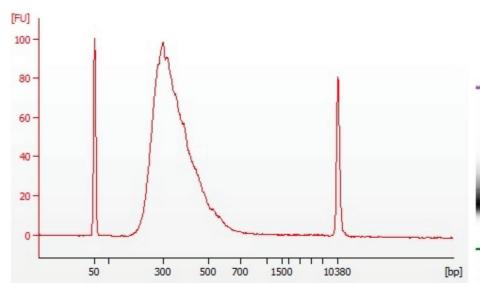
3.13 Repeat this wash once, for a total of two washes, while keeping the samples on the magnetic plate.

3.14 Carefully remove all remaining ethanol with a 10- μ l pipette, making sure not to disturb the bead pellet.

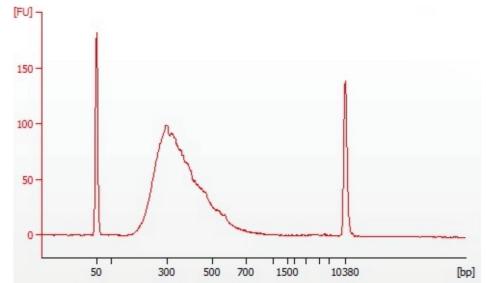
NOTE: Before pipetting, the bead pellet may be briefly spun to collect ethanol at the bottom of the plate or tube and returned to the magnetic plate.

3.15 Air-dry the bead pellet on the magnetic plate for 5 minutes or until the bead pellet is dry. Do not overdry the bead pellet.

3.16 Remove the plate or tubes from the magnetic plate and add 22 μ l 10 mM Tris-HCl pH 8 to each sample. Mix by pipetting until homogenized.


3.17 Incubate at room temperature for 2 minutes.

3.18 Place the plate or tubes on a magnetic plate and let stand for 3 minutes or until the beads form a pellet.


3.19 Transfer 20 μ l of the clear supernatant containing the Amplified Indexed Libraries to a clean thin-walled PCR 0.2-ml strip-tube or well of a 96-well thermal cycling plate, making sure not to disturb the bead pellet.

PERFORM QC

3.20 Quantify and validate the size range of each library using the Thermo Fisher Scientific Qubit dsDNA Broad Range Quantitation Assay and Agilent DNA 7500 Assay. Final concentration values should be ≥ 25 ng/ μ l. The average fragment length will vary based on the quality of input RNA and the fragmentation condition selected.

Representative electropherogram of a library generated from 100 ng of high-quality RNA, using 10 minute incubation at 90°C for fragmentation, only one post-ligation purification, and 9 cycles of PCR.

Representative electropherogram of a library generated from 100 ng of FFPE-derived RNA, using 1 minute incubation at 65°C for fragmentation, only one post-ligation purification, and 9 cycles of PCR.

 STOPPING POINT: If not proceeding immediately to a Twist Target Enrichment System, store the amplified indexed libraries at –20°C.

END OF WORKFLOW

APPENDIX A: UDI SEQUENCES AND POOLING GUIDELINES

UDI SEQUENCES

For a complete guide of the Twist UDI sequences used in the Twist Universal Adapter System, please refer to the UDI Sequences Reference Spreadsheet and the Sample Sheet Template. All files are available for download at twistbioscience.com/resources/protocol/Unique%20Dual-Index-Sequences-reference-spreadsheets-and-sample-sheet-templates

POOLING GUIDELINES

Twist UDI primers are base balanced for next-generation sequencing on a column basis. When pooling unique dual-indexed libraries for 8-plex hybridization, it is recommended that libraries be selected from a single column. Multiple columns may be selected in any desired combination across a single plate or multiple plates for sequencing.

Table 1. Twist UDI primer plate layouts and pooling guidelines.

Twist Universal Adapter System: TruSeq Compatible, 16 Samples (101307)

	1	2	3	4	5	6	7	8	9	10	11	12
A	1	9										
B	2	10										
C	3	11										
D	4	12										
E	5	13										
F	6	14										
G	7	15										
H	8	16										

NOTE: The indexes in the 16 sample plate are not the same in 96 samples, Plate A.

APPENDIX A: UDI SEQUENCES AND POOLING GUIDELINES

Twist Universal Adapter System: TruSeq Compatible, 96 Samples, Plates A to D (101308, 101309, 101310, 101311)

Plate A.

	1	2	3	4	5	6	7	8	9	10	11	12
A	1	9	17	25	33	41	49	57	65	73	81	89
B	2	10	18	26	34	42	50	58	66	74	82	90
C	3	11	19	27	35	43	51	59	67	75	83	91
D	4	12	20	28	36	44	52	60	68	76	84	92
E	5	13	21	29	37	45	53	61	69	77	85	93
F	6	14	22	30	38	46	54	62	70	78	86	94
G	7	15	23	31	39	47	55	63	71	79	87	95
H	8	16	24	32	40	48	56	64	72	80	88	96

Plate B.

	1	2	3	4	5	6	7	8	9	10	11	12
A	97	105	113	121	129	137	145	153	161	169	177	185
B	98	106	114	122	130	138	146	154	162	170	178	186
C	99	107	115	123	131	139	147	155	163	171	179	187
D	100	108	116	124	132	140	148	156	164	172	180	188
E	101	109	117	125	133	141	149	157	165	173	181	189
F	102	110	118	126	134	142	150	158	166	174	182	190
G	103	111	119	127	135	143	151	159	167	175	183	191
H	104	112	120	128	136	144	152	160	168	176	184	192

Plate C.

	1	2	3	4	5	6	7	8	9	10	11	12
A	193	201	209	217	225	233	241	249	257	265	273	281
B	194	202	210	218	226	234	242	250	258	266	274	282
C	195	203	211	219	227	235	243	251	259	267	275	283
D	196	204	212	220	228	236	244	252	260	268	276	284
E	197	205	213	221	229	237	245	253	261	269	277	285
F	198	206	214	222	230	238	246	254	262	270	278	286
G	199	207	215	223	231	239	247	255	263	271	279	287
H	200	208	216	224	232	240	248	256	264	272	280	288

Plate D.

	1	2	3	4	5	6	7	8	9	10	11	12
A	289	297	305	313	321	329	337	345	353	361	369	377
B	290	298	306	314	322	330	338	346	354	362	370	378
C	291	299	307	315	323	331	339	347	355	363	371	379
D	292	300	308	316	324	332	340	348	356	364	372	380
E	293	301	309	317	325	333	341	349	357	365	373	381
F	294	302	310	318	326	334	342	350	358	366	374	382
G	295	303	311	319	327	335	343	351	359	367	375	383
H	296	304	312	320	328	336	344	352	360	368	376	384

APPENDIX B: HT UDI SEQUENCES AND POOLING GUIDELINES

HT UDI SEQUENCES

The Twist HT UDI Primers in the Twist HT Universal Adapter System contain indexes of 12 nucleotides that are distinct from the Twist UDI Primers in the Twist Universal Adapter System. All 3,072 indexes are available in either 96-well or 384-well plate format. Representative plate layouts are below.

CAUTION: Sequence only one plate configuration at a time because the 96-well and 384-well plate formats both use the same 3,072 indexes.

For a complete guide of the Twist HT UDI sequences used in the Twist HT Universal Adapter System, please refer to the HT UDI Sequences Reference Spreadsheets and HT UDI Sample Sheet Templates. These files are available for download here: twistbioscience.com/resources/data-files/high-throughput-unique-dual-index-sequences-reference-spreadsheets-and-sample

POOLING GUIDELINES

The Twist HT UDI Primers are base balanced for next-generation sequencing on a column basis. When pooling unique dual-indexed libraries for multiplex hybridization, it is recommended that libraries be selected from a single column. Multiple columns may be selected in any desired combination across a single plate or multiple plates for sequencing.

Table 2: Representative 96-Well Plate Layouts

Twist HT Universal Adapter System: TruSeq Compatible, 96-Well, Plates AAA01-AAA16 and BBB01-BBB16 (106390-106393, 106396, 106398-106400)

Plate 96W-AAA01

	1	2	3	4	5	6	7	8	9	10	11	12
A	1	2	3	4	5	6	7	8	9	10	11	12
B	13	14	15	16	17	18	19	20	21	22	23	24
C	25	26	27	28	29	30	31	32	33	34	35	36
D	37	38	39	40	41	42	43	44	45	46	47	48
E	49	50	51	52	53	54	55	56	57	58	59	60
F	61	62	63	64	65	66	67	68	69	70	71	72
G	73	74	75	76	77	78	79	80	81	82	83	84
H	85	86	87	88	89	90	91	92	93	94	95	96

Plate 96W-AAA02

	1	2	3	4	5	6	7	8	9	10	11	12
A	97	98	99	100	101	102	103	104	105	106	107	108
B	109	110	111	112	113	114	115	116	117	118	119	120
C	121	122	123	124	125	126	127	128	129	130	131	132
D	133	134	135	136	137	138	139	140	141	142	143	144
E	145	146	147	148	149	150	151	152	153	154	155	156
F	157	158	159	160	161	162	163	164	165	166	167	168
G	169	170	171	172	173	174	175	176	177	178	179	180
H	181	182	183	184	185	186	187	188	189	190	191	192

Plate 96W-AAA03

	1	2	3	4	5	6	7	8	9	10	11	12
A	193	194	195	196	197	198	199	200	201	202	203	204
B	205	206	207	208	209	210	211	212	213	214	215	216
C	217	218	219	220	221	222	223	224	225	226	227	228
D	229	230	231	232	233	234	235	236	237	238	239	240
E	241	242	243	244	245	246	247	248	249	250	251	252
F	253	254	255	256	257	258	259	260	261	262	263	264
G	265	266	267	268	269	270	271	272	273	274	275	276
H	277	278	279	280	281	282	283	284	285	286	287	288

Plate 96W-AAA04

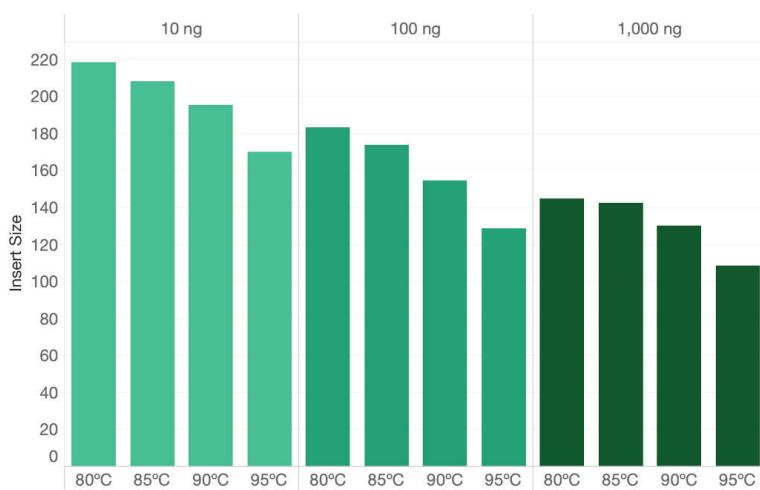
	1	2	3	4	5	6	7	8	9	10	11	12
A	289	290	291	292	293	294	295	296	297	298	299	300
B	301	302	303	304	305	306	307	308	309	310	311	312
C	313	314	315	316	317	318	319	320	321	322	323	324
D	325	326	327	328	329	330	331	332	333	334	335	336
E	337	338	339	340	341	342	343	344	345	346	347	348
F	349	350	351	352	353	354	355	356	357	358	359	360
G	361	362	363	364	365	366	367	368	369	370	371	372
H	373	374	375	376	377	378	379	380	381	382	383	384

Table 3: Representative 384-Well Plate Layout

Twist HT Universal Adapter System: TruSeq Compatible, 384-Well, Plates AAA01-AAA04 and BBB01-BBB04 (106401-106408)

Plate 384W-AAA01

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
A	1	97	2	98	3	99	4	100	5	101	6	102	7	103	8	104	9	105	10	106	11	107	12	108
B	193	289	194	290	195	291	196	292	197	293	198	294	199	295	200	296	201	297	202	298	203	299	204	300
C	13	109	14	110	15	111	16	112	17	113	18	114	19	115	20	116	21	117	22	118	23	119	24	120
D	205	301	206	302	207	303	208	304	209	305	210	306	211	307	212	308	213	309	214	310	215	311	216	312
E	25	121	26	122	27	123	28	124	29	125	30	126	31	127	32	128	33	129	34	130	35	131	36	132
F	217	313	218	314	219	315	220	316	221	317	222	318	223	319	224	320	225	321	226	322	227	323	228	324
G	37	133	38	134	39	135	40	136	41	137	42	138	43	139	44	140	45	141	46	142	47	143	48	144
H	229	325	230	326	231	327	232	328	233	329	234	330	235	331	236	332	237	333	238	334	239	335	240	336
I	49	145	50	146	51	147	52	148	53	149	54	150	55	151	56	152	57	153	58	154	59	155	60	156
J	241	337	242	338	243	339	244	340	245	341	246	342	247	343	248	344	249	345	250	346	251	347	252	348
K	61	157	62	158	63	159	64	160	65	161	66	162	67	163	68	164	69	165	70	166	71	167	72	168
L	253	349	254	350	255	351	256	352	257	353	258	354	259	355	260	356	261	357	262	358	263	359	264	360
M	73	169	74	170	75	171	76	172	77	173	78	174	79	175	80	176	81	177	82	178	83	179	84	180
N	265	361	266	362	267	363	268	364	269	365	270	366	271	367	272	368	273	369	274	370	275	371	276	372
O	85	181	86	182	87	183	88	184	89	185	90	186	91	187	92	188	93	189	94	190	95	191	96	192
P	277	373	278	374	279	375	280	376	281	377	282	378	283	379	284	380	285	381	286	382	287	383	288	384


APPENDIX C: OBTAINING ALTERNATIVE INSERT SIZES

FRAGMENTATION OPTIMIZATION

Fragmentation rates may vary depending on many factors including RNA quality, RNA mass input, fragmentation temperature, and fragmentation time. For high-quality RNA inputs, begin optimization of Fragmentation (Protocol Step 1.2) by selecting the desired size range condition for the mass input being used from the table below. Test a range of fragmentation temperatures around the initial condition in 5 degree increments. Longer insert sizes may be achieved by lowering the fragmentation time in 3-5 minute increments.

NOTE: degraded samples, including those derived from FFPE, may be difficult to modulate. Use lower temperatures and shorter incubation times for these sample types.

STEP 2 INCUBATION				
RNA QUALITY	FRAGMENTATION CONDITION*	EXPECTED INSERT SIZE		
		≤10 NG	100 NG	1000 NG
Intact RIN >7	80°C for 10 min	210 - 230 bp	175 - 195 bp	140 - 160 bp
	85°C for 10 min	200 - 220 bp	160 - 180 bp	130 - 150 bp
	90°C for 10 min	190 - 210 bp	145 - 165 bp	120 - 140 bp
	95°C for 10 min	160 - 180 bp	120 - 140 bp	100 - 120 bp

Figure 1. Insert Size of RNA Libraries. 10, 100, or 1,000 ng of high-quality RNA were taken through the the Twist RNA Library Preparation with Twist Universal Adapter System Protocol. The fragmentation incubation temperature in Step 1.2 was set between 80°C and 95°C to modulate RNA library insert size.