

Apurva S. Chitre^{1*}, Elaine K. Hebda-Bauer^{2*}, Peter Blandino², Hannah Bimschleger¹, Khai-Minh Nguyen¹, Pamela Maras², Fei Li², A. Bilge Ozel³, Oksana Polysskaya¹, Riyan Cheng¹, Shelly B. Flagel², Stanley J. Watson, Jr.², Jun Li³, Huda Akil^{2}, Abraham A Palmer^{1,4**}**

1 Department of Psychiatry,
University of California San Diego

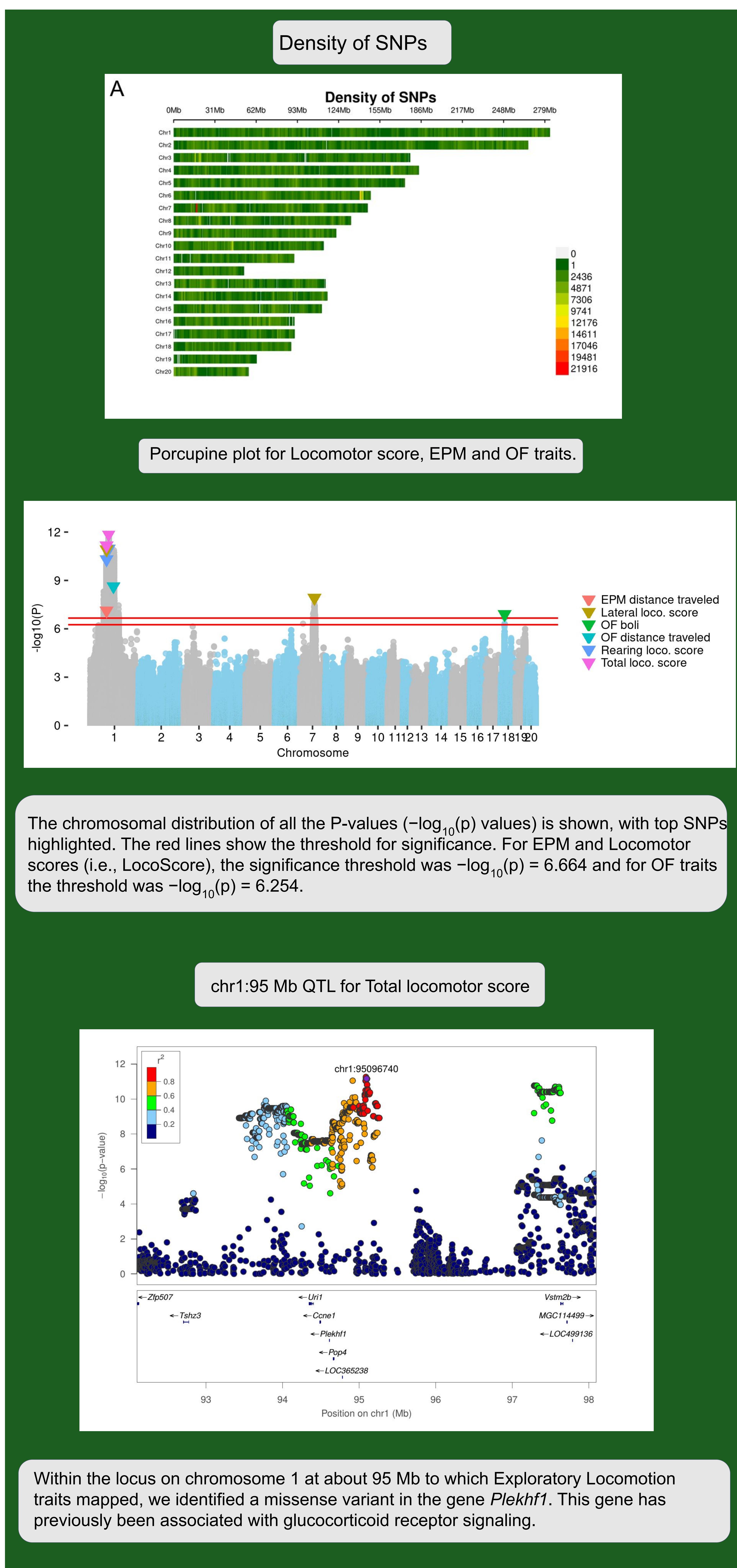
2 Michigan Neuroscience

Institute, University of Michigan

3 Department of Human Genetics,
University of Michigan

4 Institute for Genomic Medicine,
University of California San Diego

INTRODUCTION


We probed genetic differences produced by a long-term selective breeding program by creating an F_2 cross between two phenotypically divergent outbred rat lines and then used this F_2 cross to map loci for the selection trait, sensation-seeking behavior, as well as several putatively correlated traits.

GENOTYPING

- We obtained 4,425,349 Single Nucleotide Polymorphisms (SNPs) across 538 F_2 rats using low-coverage whole genome sequencing (IcWGS).
- Multiplexed sequencing libraries were prepared using the Twist 96-Plex Library Preparation kit (and then sequenced on a NovaSeq 6000 platform (Illumina)).
- To identify SNPs that segregate between bHR and bLR, we deeply sequenced 20 rats from the F_0 generation. We then used STITCH to impute genotypes in the F_2 using the SNPs from the 20 deeply sequenced F_0 rats as reference data.
- Next, we used BEAGLE to impute missing genotypes. To estimate genotyping accuracy and to identify potential sample mix-ups due to sample handling errors, we compared our genotypes to ~400 genotypes from an earlier microarray derived genotypes (Zhou et al., 2019).
- We used these dense, high-quality genotypes to perform genetic analysis.

PHENOTYPING AND GWAS

- We phenotyped the animals for multiple behavioral traits.
- GWAS was performed using the MLMA-LOCO algorithm of GCTA software. SNP heritability estimates were also obtained with GCTA using the REML method.

RESULTS

- The SNP heritability estimates for all the phenotypes ranged from 0.06 to 0.79. Lowest SNP h_2 estimates: PavCA measures and highest SNP h_2 estimates: Exploratory Locomotion traits.
- Despite the modest (for GWAS) sample size, we identified significant genetic associations for all facets of EL, OF, and EPM behaviors, but not for PavCA behavior.
- The loci were relatively small and contained several interesting genes.

CONCLUSIONS

- We discovered several genetic loci associated with complex behavior traits.
- Distance traveled measures from the open field and the elevated plus maze map onto different loci, thus may represent different aspects of novelty-induced locomotor activity.
- In conclusion, our selectively bred rat model reveals greater insight into the genetic architecture of sensation-seeking, anxiety, and addiction-related traits.

ACKNOWLEDGEMENTS

NIDA U01DA043098 (HA, JZL, AP); Office of Naval Research (ONR) 00014-19-1-2149 (HA); The Hope for Depression Research Foundation (HDRF) (HA); the Pritzker Neuropsychiatric Research Consortium, Twist Biosciences

Scan for full paper

achitre@ucsd.edu