Twist Fast Hybridization
Target Enrichment Protocol

For use with the Twist NGS Workflow

The Twist Fast Hybridization Target Enrichment protocol generates target-enriched DNA libraries for sequencing on Illumina next-generation sequencing (NGS) systems. This manual details the steps for a flexible hybridization that can require as little as 15 minutes but can be adjusted to suit your needs for optimum performance in the shortest amount of time possible.

A component of the Twist Target Enrichment for NGS workflow, this protocol is:
• Designed for single or multiplex hybridization reactions using either Twist fixed or custom panels; optional secondary panels (spike-ins) can also be added for additional content
• Optimized for use with Twist Library Preparation Kits
• Should only be performed with the reagents specified, or their equivalents

Sample Prep Library Prep Target Enrichment Sequencing Analysis

Twist NGS workflow: The complete NGS workflow takes you from sample preparation to NGS sequencing and data analysis. A component of this workflow, the Twist Fast Hybridization Target Enrichment Protocol works in conjunction with the other component protocols.

This product is for research use only.
Read the product packaging and storage recommendations carefully for each component, and store components as recommended below immediately upon arrival.

TWIST PROBE PANELS (ordered separately)

<table>
<thead>
<tr>
<th>CATALOG #</th>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice of panel type and reaction size</td>
<td>Twist Fixed Panel</td>
<td>Fixed content enrichment panel for hybridization reactions (for example, Twist Human Core Exome Panel)</td>
<td>-20°C</td>
</tr>
<tr>
<td></td>
<td>Twist Custom Panel</td>
<td>Custom enrichment panel for hybridization reactions</td>
<td>-20°C</td>
</tr>
<tr>
<td></td>
<td>(Optional) Secondary panel</td>
<td>Secondary enrichment panel for adding content to a fixed or custom panel</td>
<td>-20°C</td>
</tr>
</tbody>
</table>

TWIST FAST-HYBRIDIZATION REAGENTS

<table>
<thead>
<tr>
<th>CATALOG #</th>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>100856: 2 rxn</td>
<td>Twist Universal Blockers</td>
<td>For the prevention of nonspecific capture: Universal Blockers, Blocking Solution</td>
<td>-20°C</td>
</tr>
<tr>
<td>100578:12 rxn</td>
<td>Twist Binding and Purification Beads</td>
<td>For target enrichment and purification: Streptavidin Binding Beads, DNA Purification Beads</td>
<td>2–8°C</td>
</tr>
<tr>
<td>100767: 96 rxn</td>
<td>Twist Fast Hybridization and Wash Kit (2 Boxes)</td>
<td>For target enrichment with Twist Fast hybridization: Fast Hybridization Mix, Hybridization Enhancer, Amplification Primers</td>
<td>-20°C</td>
</tr>
<tr>
<td>101262: 2 rxn</td>
<td>Twist Fast Hybridization Reagents (Box 1 of 2)</td>
<td>Fast Binding Buffer, Fast Wash Buffer 1, Wash Buffer 2</td>
<td>2–8°C</td>
</tr>
<tr>
<td>101174: 12 rxn</td>
<td>Twist Fast Wash Buffers (Box 2 of 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LEGAL

This document may contain references to other third-party resources such as sources of information, hardware or software, products, or services and/or web sites owned or licensed by third parties. Twist Bioscience does not control or take responsibility for any third-party resources, including, without limitation, the accuracy, reliability, copyright compliance, compatibility, performance, legality, or any other aspect of third-party resources. The inclusion of such resources in this document does not imply endorsement by Twist Bioscience of any third-party resources.

Certain processes described in this document may be subject to patent rights or licenses in local jurisdictions, including those owned or licensed by parties other than Twist Bioscience. Purchase of this product does not include a license to perform any such processes. Users of this product may, therefore, be required to obtain a patent license depending upon the particular application and country in which the product is used before performing such processes.

INTENDED USE

This product is for research use only. This product is not intended for the diagnosis, prevention, or treatment of a disease or condition. Twist Bioscience assumes no liability regarding use of the product for applications in which it is not intended.

We received ISO 9001:2015 and ISO 13485:2016 certification for our quality management system governing the design and manufacture of our NGS TE Panels.

TRADEMARKS

The following trademark representations are believed to be accurate, but are not guaranteed to be so: Alpaqua®, Agilent®, Agilent Technologies®, Beckman Coulter®, Bioanalyzer®, Eppendorf®, Illumina®, Kapa®, Kapa Biosystems®, Permagen Labware®, SpeedVac®, Thermo Fisher Scientific®, Thermomixer®, Twist Bioscience®, Qubit®, and VWR®.

Registered or registration-pending names, trademarks, etc. used herein, even when not specifically marked as such, are not to be considered unprotected by law.
TABLE OF CONTENTS

Materials Supplied by User
General Notes and Precautions
Protocol Overview
Step 1: Prepare Libraries for Hybridization
 Aliquot the Libraries
 Prepare the Pre-Hybridization Solution
Step 2: Hybridize Capture Probes With Pools
 Resuspend the Pre-Hybridization Solution
 Perform the Hybridization Reaction
Step 3: Bind Hybridized Targets to Streptavidin Beads
 Prepare the Beads
 Bind the Targets
Step 4: Post-Capture PCR Amplify, Purify, and Perform QC
 Prepare the Beads, Thermal Cycler, and PCR Mix
 PCR Amplify
 Purify
 Perform QC
Step 5: Sequencing on an Illumina Platform
APPENDIX A: Temperature Adjustment of Fast Wash Buffer 1
The following materials or their equivalent are required to generate enriched libraries using the Twist Fast Hybridization Target Enrichment workflow.

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>SUGGESTED SUPPLIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAGENTS AND CONSUMABLES</td>
<td></td>
</tr>
<tr>
<td>Ethanol (200 proof)</td>
<td>—</td>
</tr>
<tr>
<td>Molecular biology grade water</td>
<td>—</td>
</tr>
<tr>
<td>KAPA HiFi HotStart ReadyMix</td>
<td>Kapa Biosystems</td>
</tr>
<tr>
<td>1.5-ml microcentrifuge tubes</td>
<td>VWR</td>
</tr>
<tr>
<td>Thin-walled PCR 0.2-ml strip-tubes</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>96-well thermal cycling plates</td>
<td>VWR</td>
</tr>
<tr>
<td>1.5-ml compatible magnetic stand</td>
<td>Beckman Coulter, Thermo Fisher Scientific</td>
</tr>
<tr>
<td>96-well compatible magnetic plate</td>
<td>Alpaqua, Permagen Labware</td>
</tr>
<tr>
<td>Qubit dsDNA High Sensitivity Quantitation Assay</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Agilent High Sensitivity DNA Kit</td>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>EQUIPMENT</td>
<td></td>
</tr>
<tr>
<td>Pipettes and tips</td>
<td>—</td>
</tr>
<tr>
<td>Vortex mixer</td>
<td>—</td>
</tr>
<tr>
<td>Benchtop mini centrifuge for 0.2-ml tubes</td>
<td>—</td>
</tr>
<tr>
<td>Thermomixer for 1.5-ml tubes</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Thermal cycler (96 well) with heated lid</td>
<td>—</td>
</tr>
<tr>
<td>Lab shaker, rocker, rotator</td>
<td>—</td>
</tr>
<tr>
<td>Fluorometer (Qubit 3.0)</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>2100 Bioanalyzer</td>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>Vacuum concentrator</td>
<td>—</td>
</tr>
</tbody>
</table>
GENERAL NOTES AND PRECAUTIONS

Wear appropriate protective equipment (lab coat, gloves, and protective glasses or goggles) at all times when performing this protocol.

For best results, read this document before performing the protocol, and follow the provided instructions. Twist cannot guarantee the performance of the Twist Fast Hybridization Target Enrichment Workflow if modifications are made to the protocol.

Test the compatibility of your thermal cycler and PCR tubes by incubating them at 95°C for up to 5 minutes to ensure the PCR tubes do not crack under heat and pressure. Adjust the tightness of the thermal cycler lid and/or use a spacer specific to the thermal cycler model.

If using a non-human capture panel, replace the Blocker Solution with species-specific blocking solution (not provided).

This protocol details different methods for mixing reagents (gentle pipetting, flicking or tapping, vortexing), depending on the volume, vessel, and reagents involved.

The Fast Hybridization Mix is a viscous reagent. Pipette slowly to ensure accuracy.

For technical support, contact NGSsupport@twistbioscience.com
This protocol begins with amplified, indexed genomic DNA (gDNA) libraries and generates target-enriched DNA libraries for sequencing on Illumina next-generation sequencing (NGS) systems. It features a flexible hybridization time of 15 minutes to 4 hours, which allows the entire target enrichment workflow to be completed in less than one day. This flexibility allows you to adjust the hybridization time as needed to balance your workflow and performance needs:

- A 15-minute hybridization yields the same performance (depth of coverage) previously achieved with overnight hybridization
- Longer (1–4 hour) hybridizations in the Twist Fast Hybridization Solution can improve performance
- Can also accommodate workflows that require an overnight hybridization

<table>
<thead>
<tr>
<th>FAST HYBRIDIZATION TARGET ENRICHMENT WORKFLOW (AMPLIFIED INDEXED LIBRARIES)</th>
<th>TIME</th>
</tr>
</thead>
</table>
| **STEP 1** Prepare libraries for hybridization
Indexed library pool | 1 hour |
| **STEP 2** Hybridize capture probes with pools
Hybridized targets in solution | 0.5 hour
Plus flexible
15 minutes to 4 hours |
| **STEP 3** Bind hybridized targets to streptavidin beads
Captured targets on beads | 1.5 hour |
| **STEP 4** Post-capture PCR amplify, purify, and perform QC
Enriched libraries | 1 hour |
| **STEP 5** Sequence on an Illumina platform
Libraries ready for sequencing on Illumina platform | — |
STEP 1

PREPARE LIBRARIES FOR HYBRIDIZATION

This step involves aliquoting the appropriate amount of amplified, indexed libraries (generated previously in library preparation) and preparing the hybridization reaction solution. For a list of Twist Library Preparation Kit options, see twistbioscience.com/products/ngs.

- When multiplexing, follow the pooling guidelines included as Appendix A in the Twist Library Preparation Protocol used.
- If using another library preparation method, use the pooling guidelines specific to that method.

Reagents Required
- Amplified, indexed library
- Twist fixed or custom panel
- Twist custom secondary (spike-in) panel(s) (optional)
- Twist Universal Blockers:
 - Universal Blockers
 - Blocker Solution (If using a non-human capture panel, replace with species-specific blocking solution, not provided)

Before You Begin
Thaw all required reagents on ice, then pulse-vortex for 2 seconds to mix and pulse-spin.
In preparation for Step 2 (Hybridize Capture Probes with Pools), also thaw on ice:
From the Twist Fast Hybridization Reagents:
- Fast Hybridization Mix
- Hybridization Enhancer

ALIQUOT THE LIBRARIES

This protocol supports a single-plex or multi-plex (up to 8-plex) hybridization capture. The amount of indexed library to use depends on the number of indexed samples per pool.

1.1

Use the concentration of each amplified, indexed library to calculate the volume (in μl) of each library needed for hybridization:
- Determine the amount of each indexed library per pool from the table below.
- Divide the amount of each indexed library per pool by the concentrations measured in ng/μl from the library preparation QC.
 For example; If multiplexing eight libraries per hybridization reaction, the amount of each library will be 187.5 ng while the total mass of the pool will be 1,500 ng.
STEPS 1.1–1.5

1.1 (continued)

<table>
<thead>
<tr>
<th>NUMBER OF INDEXED SAMPLES PER POOL</th>
<th>AMOUNT OF EACH INDEXED LIBRARY PER POOL</th>
<th>TOTAL MASS PER POOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500 ng</td>
<td>500 ng</td>
</tr>
<tr>
<td>2</td>
<td>500 ng</td>
<td>1,000 ng</td>
</tr>
<tr>
<td>3</td>
<td>500 ng</td>
<td>1,500 ng</td>
</tr>
<tr>
<td>4</td>
<td>375 ng</td>
<td>1,500 ng</td>
</tr>
<tr>
<td>8</td>
<td>187.5 ng</td>
<td>1,500 ng</td>
</tr>
</tbody>
</table>

- If the amount of library you have is insufficient, you can use a smaller amount; using less, however, may result in decreased library complexity.
- More than 1,500 ng (1.5 µg) total DNA can be used; do not, however, use more than 4 µg total DNA, as this might lead to incomplete enrichment.

1.2 Transfer the calculated volumes from each amplified indexed library to a hybridization reaction tube (either a 0.2-ml thin-walled PCR strip-tube or 96-well plate) for each hybridization reaction to be performed.

PREPARE THE PRE-HYBRIDIZATION SOLUTION

1.3 Add the following volumes of reagents to each amplified indexed library to create a pre-hybridization solution. Mix by flicking the tube(s).

<table>
<thead>
<tr>
<th>REAGENT</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twist Probe Panel</td>
<td>4 µl</td>
</tr>
<tr>
<td>Optional: Secondary Panel</td>
<td>4 µl</td>
</tr>
<tr>
<td>(If a secondary panel is not used, do not add water as the entire solution will be dried down)</td>
<td></td>
</tr>
<tr>
<td>Universal Blockers</td>
<td>8 µl</td>
</tr>
<tr>
<td>Blocker Solution</td>
<td>5 µl</td>
</tr>
</tbody>
</table>

1.4 Pulse-spin the tube(s) and ensure there are minimal bubbles present.

1.5 Dry the pre-hybridization solution (library, probes, blockers) in the tube(s) used for the hybridization reaction using a SpeedVac system (or a similar evaporator device) using low or no-heat.

⚠️ IMPORTANT: Step 3.1 to 3.7 should be performed concurrently to the pre-hybridization solution dry down and Step 2 for hybridizations under 30 minutes.

PROCEED TO STEP 2: HYBRIDIZE CAPTURE PROBES WITH POOLS
STEP 2

HYBRIDIZE CAPTURE PROBES WITH POOLS

Use the aliquoted libraries and hybridization reaction solution from Step 1, as well as the Fast Hybridization Mix and Hybridization Enhancer you thawed in Step 1.

IMPORTANT: Before proceeding with this step, test the compatibility of your thermal cycler and PCR tubes or plates by incubating them at 95°C for up to 5 minutes to ensure they do not crack under heat and pressure. Adjust the tightness of the thermal cycler lid and/or use a spacer specific to the thermal cycler model.

Reagents Required
- Dried hybridization reaction (from Step 1.5)
- Reagents thawed in Step 1:
 - Fast Hybridization Mix
 - Hybridization Enhancer

Before You Begin
Program a 96-well thermal cycler with the following conditions and set the heated lid to 85°C:

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C</td>
<td>HOLD</td>
</tr>
<tr>
<td>95°C</td>
<td>5 minutes</td>
</tr>
</tbody>
</table>
| 60°C | 15 min to 4 hours

RESUSPEND THE PRE-HYBRIDIZATION SOLUTION

2.1
Heat the Fast Hybridization Mix at 65°C for 10 minutes, or until all precipitate is dissolved. Vortex and use immediately. Do not allow the Fast Hybridization Mix to cool to room temperature.

2.2
Resuspend the dried pre-hybridization solution from Step 1.5 in 20 μl Fast Hybridization Mix.

NOTES:
- If this resuspended solution requires transfer into a secondary vessel for hybridization, mix by flicking and please wait an addition 5 minutes for resuspension.
- Fast Hybridization Mix is viscous. Pipette slowly to ensure accuracy.
- Small white particles may be present in the capture probes. They do not affect the final capture product.

2.3
Pulse-spin the tube(s) and ensure there are no bubbles present.

Set this hybridization time as needed for your application (anywhere from 15 minutes to 4 hours).
PERFORM THE HYBRIDIZATION REACTION

2.4 Add 30 µl Hybridization Enhancer to the top of the pre-hybridization solution.

2.5 Pulse-spin the tube(s) to ensure all solution is at the bottom of the tube(s).

NOTE: Hybridization Enhancer settles on top of the hybridization reaction after the pulse-spin. This does not affect the final capture product.

2.6 Transfer the tube(s) to the preheated thermal cycler and move to Steps 2 and 3 of the thermocycler program.

⚠️ IMPORTANT: Make sure the tube is sealed tightly to prevent evaporation over the incubation.

PROCEED TO STEP 3: BIND HYBRIDIZED TARGETS TO STREPTAVIDIN BEADS
STEP 3
BIND HYBRIDIZED TARGETS TO STREPTAVIDIN BEADS

Reagents Required
- Hybridization reactions (from Step 2.7)
- From the Twist Fast Wash Buffers:
 - Fast Binding Buffer
 - Fast Wash Buffer 1
 - Wash Buffer 2
- From Twist Binding and Purification Beads:
 - Streptavidin Binding Beads

Before You Begin
Inspect the following for precipitate, and if a precipitate is observed, heat at 48°C until it is dissolved:
- Fast Binding Buffer
- Fast Wash Buffer 1
- Wash Buffer 2

For each hybridization reaction:
- Preheat 450 μl Fast Wash Buffer 1 to 70°C
- Preheat 700 μl Wash Buffer 2 to 48°C

Equilibrate the Streptavidin Binding Beads to room temperature for at least 30 minutes

In preparation for Step 4 (Post-Capture PCR Amplify, Purify, and Perform QC):
- DNA Purification Beads (from the Twist Binding and Purification Beads) — equilibrate to room temperature for at least 30 minutes
- KAPA HiFi HotStart ReadyMix — thaw on ice
- Amplification Primers (from the Twist Fast Hybridization and Wash Kit) — thaw on ice

Once these reagents are thawed, pulse-vortex for 2 seconds to mix.

PREPARE THE BEADS

3.1 Vortex the pre-equilibrated Streptavidin Binding Beads until mixed.

3.2 Add 100 μl Streptavidin Binding Beads to a 1.5-ml microcentrifuge tube. Prepare one tube for each hybridization reaction.

3.3 Add 200 μl Fast Binding Buffer to the tube(s) and mix by pipetting.

3.4 Place the tube(s) on a magnetic stand for 1 minute, then remove and discard the clear supernatant. Make sure to not disturb the bead pellet. Remove the tube from the magnetic stand.

3.5 Repeat the wash (Steps 3.3 and 3.4) two more times for a total of three washes.
3.6 After removing the clear supernatant from the third wash, add a final 200 μl Fast Binding Buffer and resuspend the beads by vortexing until homogenized.

3.7 After the hybridization (Step 2.7) is complete, open the thermal cycler lid and quickly transfer the volume of each hybridization reaction including Hybridization Enhancer into a corresponding tube of washed Streptavidin Binding Beads from Step 3.6. Mix by pipetting and flicking.

NOTE: Rapid transfer directly from the thermal cycler at 60°C is a critical step for minimizing off-target binding. Do not remove the tube(s) of hybridization reaction from the thermal cycler or otherwise allow it to cool to less than 60°C before transferring the solution to the washed Streptavidin Binding Beads.

BIND THE TARGETS

3.8 Mix the tube(s) of the hybridization reaction with the Streptavidin Binding Beads for 30 minutes at room temperature on a shaker, rocker, or rotator at a speed sufficient to keep the solution mixed.

NOTE: Do not vortex. Aggressive mixing is not required.

3.9 Remove the tube(s) containing the hybridization reaction with Streptavidin Binding Beads from the mixer and pulse-spin to ensure all solution is at the bottom of the tube(s).

3.10 Place the tube(s) on a magnetic stand for 1 minute.

3.11 Remove and discard the clear supernatant including the Hybridization Enhancer. Do not disturb the bead pellet.

NOTE: A trace amount of Hybridization Enhancer may be visible after supernatant removal and throughout each wash step. It will not affect the final capture product.

3.12 Remove the tube(s) from the magnetic stand and add 200 μl preheated Fast Wash Buffer 1. Mix by pipetting.

3.13 Incubate the tube(s) for 5 minutes at 70°C.

3.14 Place the tube(s) on a magnetic stand for 1 minute.

3.15 Remove and discard the clear supernatant. Make sure to not disturb bead pellet.

3.16 Remove the tube(s) from the magnetic stand and add an additional 200 μl of preheated Fast Wash Buffer 1. Mix by pipetting.

3.17 Incubate the tube(s) for 5 minutes at 70°C.

NOTE: The temperature of this 70°C Wash Buffer 1 can be altered to tune off-target and uniformity in a use-case specific manner. Please see Appendix A for more information.

3.18 Pulse-spin to ensure all solution is at the bottom of the tube(s).
Transfer the entire volume from Step 3.18 (~200 μl) into a new 1.5-ml microcentrifuge tube, one per hybridization reaction. Place the tube(s) on a magnetic stand for 1 minute.

NOTE: A tube transfer is required at this step as it reduces background due to non-targeted library that may stick to the surface of the tube.

Remove and discard the clear supernatant. Make sure to not disturb the bead pellet.

Remove the tube(s) from the magnetic stand and add 200 μl of 48°C Wash Buffer 2. Mix by pipetting, then pulse-spin to ensure all solution is at the bottom of the tube(s).

Incubate the tube(s) for 5 minutes at 48°C.

Place the tube(s) on a magnetic stand for 1 minute.

Remove and discard the clear supernatant. Make sure to not disturb the bead pellet.

Repeat the wash (Steps 3.21–3.24) two more times, for a total of three washes.

After the final wash, using a 10 μl pipette to remove all traces of supernatant. Proceed immediately to the next step. Do not allow the beads to dry.

Remove the tube(s) from the magnetic stand and add 45 μl water. Mix by pipetting until homogenized, then incubate this solution, hereafter referred to as the Streptavidin Binding Bead slurry, on ice.

PROCEED TO STEP 4: POST-CAPTURE PCR AMPLIFY, PURIFY, AND PERFORM QC
POST-CAPTURE PCR AMPLIFY, PURIFY, AND PERFORM QC

Reagents Required

- Streptavidin Binding Bead slurry (from Step 3.27)
- Ethanol
- Molecular biology grade water
- Reagents thawed and equilibrated in Step 3:
 - DNA Purification Beads
 - KAPA HiFi HotStart ReadyMix (or equivalent)
 - Amplification Primers
 - Agilent Bioanalyzer High Sensitivity DNA Kit (or equivalent)

Before You Begin
Prepare 500 μl 80% ethanol for each Streptavidin Binding Bead slurry to be processed.

PREPARE THE BEADS, THERMAL CYCLER, AND PCR MIX

4.1 Program a thermal cycler with the following conditions. Set the heated lid to 105°C.

<table>
<thead>
<tr>
<th>STEP</th>
<th>TEMPERATURE</th>
<th>TIME</th>
<th>NUMBER CYCLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98°C</td>
<td>45 seconds</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>98°C</td>
<td>15 seconds</td>
<td>Varies</td>
</tr>
<tr>
<td></td>
<td>60°C</td>
<td>30 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>30 seconds</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>72°C</td>
<td>1 minute</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4°C</td>
<td>HOLD</td>
<td>—</td>
</tr>
</tbody>
</table>

NOTE: Number of amplification cycles may vary depending on hybridization reaction size.

4.2 If the Streptavidin Binding Bead slurry has settled, mix by pipetting.

4.3 Transfer 22.5 μl of the Streptavidin Binding Bead slurry to a 0.2-ml thin-walled PCR strip-tube(s). Keep on ice until ready to use in the next step.

NOTE: Store the remaining 22.5 μl water/Streptavidin Binding Bead slurry at –20°C for future use.

4.4 Prepare a PCR mixture by adding the following reagents to the tube(s) containing the Streptavidin Binding Bead slurry. Mix by pipetting.
PCR AMPLIFY

4.5 Pulse-spin the tubes, transfer them to the thermal cycler and start the cycling program.

4.6 When the thermal cycler program is complete, remove the tube(s) from the block and immediately proceed to purification.

PURIFY

4.7 Vortex the DNA Purification Beads to mix.

4.8 Add 90 μl (1.8X) homogenized DNA Purification Beads to the tube(s) from Step 4.6. Mix well by vortexing.

NOTE: It is not necessary to recover supernatant or remove Streptavidin Binding Beads from the amplified PCR product.

4.9 Incubate for 5 minutes at room temperature.

4.10 Place the tube(s) on a magnetic plate for 1 minute.

4.11 Without removing the tube(s) from the magnetic plate, remove and discard the clear supernatant.

4.12 Wash the DNA Purification Bead pellet with 200 μl freshly prepared 80% ethanol for 1 minute, then remove and discard the ethanol. Repeat this wash once, for a total of two washes, while keeping the tube on the magnetic plate.

4.13 Using a 10 μl pipet, remove all residual ethanol, making sure to not disturb the bead pellet.

4.14 Air-dry the bead pellet on a magnetic plate for 5–10 minutes or until the bead pellet is dry. Do not overdry the bead pellet.

4.15 Remove the tube(s) from the magnetic plate and add 32 μl water. Mix by pipetting until homogenized and incubate at room temperature for 2 minutes.

4.16 Place the tube(s) on a magnetic plate and let stand for 3 minutes or until the beads fully pellet.

4.17 Transfer 30 μl of the clear supernatant containing the enriched library to a clean thin-walled PCR 0.2-ml strip-tube, making sure not to disturb the bead pellet.
Validate and quantify each enriched library using an Agilent Bioanalyzer High Sensitivity DNA Kit and a Thermo Fisher Scientific Qubit dsDNA High Sensitivity Quantitation Assay.

NOTE: When using the Agilent Bioanalyzer High Sensitivity DNA Kit, load 0.5 μl of the final sample. Average fragment length should be 375–425 bp using a range setting of 150–1,000 bp. Final concentration should be ≥15 ng/μl but depends on the hybridization reaction size, hybridization time, and number of PCR cycles used.

Electropherogram generated by an Agilent High Sensitivity DNA analysis of the enriched gDNA library samples that were prepared as described. Note the single prominent peak.

STOPPING POINT: If not proceeding immediately, store the Enriched Library sample at −20°C for up to 24 hours.
Sequence the Enriched Libraries on an Illumina platform. Sequencing protocols and settings will depend on the application and instrumentation used. Please contact NGSsupport@twistbioscience.com for recommendations.

END OF WORKFLOW
APPENDIX A: TEMPERATURE ADJUSTMENT OF FAST WASH BUFFER 1

Process stringency is controlled in the Fast Wash Buffer 1 step. Adjusting the temperature of the Fast Wash Buffer 1 will change the underlying Picard performance metrics in a predictable manner. Representative values of important Picard metrics are shown in Figure A1. Please refer to this figure and the Fast Wash Buffer 1 temperatures on the x-axis when optimizing panel performance around these metrics. Results shown below are with the Twist Human Core Exome at a 4 hour hybridization time.

Performance metrics improve with increased hybridization time. Performance expectations are diagramed below in Figure A2. Results shown below are with the Twist Human Core Exome with a 70°C fast wash buffer 1 temperature.

Small panels (under 0.1 Mb) will suffer greater off-target than larger panels. Off target ranges expected for different panel sizes are diagramed below in Figure A3. Metrics are plotted based on a 70°C fast wash buffer 1 temperature.

Adjust the temperature of the Fast Wash Buffer 1 to change the stringency of your wash step. Relative values for important Picard metrics are shown in the figure below. Please refer to this figure and the Fast Wash Buffer 1 temperatures on the x-axis when troubleshooting any issues surrounding these metrics. Results shown below are with the Twist Human Core Exome.

FIGURE A1
Representative target enrichment performance versus Fast Wash Buffer 1 temperature at a 4 hour hybridization time.

FIGURE A2
Representative target enrichment performance versus hybridization time with a 70°C Fast Wash Buffer 1 temperature.

FIGURE A3
Expected increase in panel off target with respect to panel size with a 70°C Fast Wash Buffer 1 temperature.