Publications
Nature communicationsDec 2024 |
15
(
1
),
10686
DOI:
10.1038/s41467-024-55194-x

CEP signaling coordinates plant immunity with nitrogen status

Rzemieniewski, Jakub; Leicher, Henriette; Lee, Hyun Kyung; Broyart, Caroline; Nayem, Shahran; Wiese, Christian; Maroschek, Julian; Camgöz, Zeynep; Olsson Lalun, Vilde; Djordjevic, Michael Anthony; Vlot, A Corina; Hückelhoven, Ralph; Santiago, Julia; Stegmann, Martin
Product Used
Genes
Abstract
Plant endogenous signaling peptides shape growth, development and adaptations to biotic and abiotic stress. Here, we identify C-TERMINALLY ENCODED PEPTIDEs (CEPs) as immune-modulatory phytocytokines in Arabidopsis thaliana. Our data reveals that CEPs induce immune outputs and are required to mount resistance against the leaf-infecting bacterial pathogen Pseudomonas syringae pv. tomato. We show that effective immunity requires CEP perception by tissue-specific CEP RECEPTOR 1 (CEPR1) and CEPR2. Moreover, we identify the related RECEPTOR-LIKE KINASE 7 (RLK7) as a CEP4-specific CEP receptor contributing to CEP-mediated immunity, suggesting a complex interplay of multiple CEP ligands and receptors in different tissues during biotic stress. CEPs have a known role in the regulation of root growth and systemic nitrogen (N)-demand signaling. We provide evidence that CEPs and their receptors promote immunity in an N status-dependent manner, suggesting a previously unknown molecular crosstalk between plant nutrition and cell surface immunity. We propose that CEPs and their receptors are central regulators for the adaptation of biotic stress responses to plant-available resources.
Product Used
Genes

Related Publications