Publications
Angewandte Chemie (International ed. in English)Apr 2023 |
62
(
15
),
e202301370
DOI:
10.1002/anie.202301370

Directed Evolution of an Iron(II)- and α-Ketoglutarate-Dependent Dioxygenase for Site-Selective Azidation of Unactivated Aliphatic C-H Bonds

Gomez, Christian A; Mondal, Dibyendu; Du, Qian; Chan, Natalie; Lewis, Jared C
Product Used
Genes
Abstract
FeII - and α-ketoglutarate-dependent halogenases and oxygenases can catalyze site-selective functionalization of C-H bonds via a variety of C-X bond forming reactions, but achieving high chemoselectivity for functionalization using non-native functional groups remains rare. The current study shows that directed evolution can be used to engineer variants of the dioxygenase SadX that address this challenge. Site-selective azidation of succinylated amino acids and a succinylated amine was achieved as a result of mutations throughout the SadX structure. The installed azide group was reduced to a primary amine, and the succinyl group required for azidation was enzymatically cleaved to provide the corresponding amine. These results provide a promising starting point for evolving additional SadX variants with activity on structurally distinct substrates and for enabling enzymatic C-H functionalization with other non-native functional groups.
Product Used
Genes

Related Publications