Publications
Science (New York, N.Y.)Dec 2013 |
342
(
6164
),
1367-1372
DOI:
10.1126/science.1243490

Exonic transcription factor binding directs codon choice and affects protein evolution

Stergachis, Andrew B; Haugen, Eric; Shafer, Anthony; Fu, Wenqing; Vernot, Benjamin; Reynolds, Alex; Raubitschek, Anthony; Ziegler, Steven; LeProust, Emily M; Akey, Joshua M; Stamatoyannopoulos, John A
Product Used
Genes
Abstract
Genomes contain both a genetic code specifying amino acids and a regulatory code specifying transcription factor (TF) recognition sequences. We used genomic deoxyribonuclease I footprinting to map nucleotide resolution TF occupancy across the human exome in 81 diverse cell types. We found that ~15% of human codons are dual-use codons ("duons") that simultaneously specify both amino acids and TF recognition sites. Duons are highly conserved and have shaped protein evolution, and TF-imposed constraint appears to be a major driver of codon usage bias. Conversely, the regulatory code has been selectively depleted of TFs that recognize stop codons. More than 17% of single-nucleotide variants within duons directly alter TF binding. Pervasive dual encoding of amino acid and regulatory information appears to be a fundamental feature of genome evolution.
Product Used
Genes

Related Publications