Publications
Improved RNA base editing with guide RNAs mimicking highly edited endogenous ADAR substrates
Abstract
Adenosine deaminase acting on RNA (ADAR)-mediated RNA base editing offers a safer alternative to genome editing for specific clinical applications because of nonpermanent editing of targets. Current guide RNA (gRNA) designs feature a fully complementary specificity domain with an A-C mismatch at the targeted adenosine. However, perfectly matched dsRNA is not the most effective ADAR substrate. Here we introduce MIRROR (mimicking inverted repeats to recruit ADARs using engineered oligoribonucleotides), an approach that implements structural motifs derived from highly edited inverted Alu repeats in human tissues to enable rational gRNA design for ADAR recruitment. We demonstrated that MIRROR is applicable to both short chemically synthesized gRNAs with modifications and long biologically generated gRNAs and surpasses current state-of-the-art approaches in both gRNA forms. It enhances editing efficiency by up to 5.7-fold in multiple human cell types and primary hepatocytes from an alpha-1 antitrypsin deficiency mouse model. Our findings improve programmable RNA editing in vitro and in vivo by rational design through the screening of highly edited natural substrate mimics.
Product Used
Oligo Pools
Related Publications