Publications
Investigation of poly ADP-ribose polymerase inhibitor resistance based on serially collected circulating tumor DNA in patients with BRCA-mutated ovarian cancer
Abstract
Patient-specific molecular alterations leading to poly ADP-ribose polymerase inhibitor (PARPi) resistance are relatively unexplored. In this study, we analyzed serially collected circulating tumor DNA (ctDNA) from patients with BRCA1/2 mutations who received PARPis to investigate the resistance mechanisms and their significance in post-progression treatment response and survival.Patients were prospectively enrolled between January 2018 and December 2021 (NCT05458973). Whole-blood samples were obtained before PARPi administration and serially every 3 months until progression. ctDNA was extracted from the samples and sequenced with a 531-gene panel; gene sets for each resistance mechanism were curated.Fifty-four patients were included in this analysis. Mutation profiles of genes in pre-PARPi samples indicating a high tumor mutational burden and alterations in genes associated with replication fork stabilization and drug efflux were associated with poor progression-free survival on PARPis. BRCA hypomorphism and reversion were found in one and three patients, respectively. Among 29 patients with matched samples, mutational heterogeneity increased post-progression on PARPis, showing at least one post-specific mutation in 89.7% of the patients. These mutations indicate non-exclusive acquired resistance mechanisms-homologous recombination repair restoration (28%), replication fork stability (34%), upregulated survival pathway (41%), target loss (10%), and drug efflux (3%). We observed poor progression-free survival with subsequent chemotherapy in patients with homologous recombination repair restoration (P = 0.003) and those with the simultaneous involvement of two or more resistance mechanisms (P = 0.040).Analysis of serial ctDNAs highlighted multiple acquired resistance mechanisms, providing valuable insights for improving post-progression treatment and survival.
Product Used
Genes
Related Publications