Publications
Machine Learning-Guided Identification of PET Hydrolases from Natural Diversity
Abstract
The enzymatic depolymerization of poly-(ethylene terephthalate) (PET) is emerging as a leading chemical recycling technology for waste polyester. As part of this endeavor, new candidate enzymes identified from natural diversity can serve as useful starting points for enzyme evolution and engineering. In this study, we improved upon HMM searches by applying an iterative machine learning strategy to identify 400 putative PET-degrading enzymes (PET hydrolases) from naturally occurring homologs. Using high-throughput (HTP) experimental techniques, we successfully expressed and purified >200 enzyme candidates and assayed them for PET hydrolysis activity as a function of pH, temperature, and substrate crystallinity. From this library, we discovered 91 previously unknown PET hydrolases, 35 of which retain activity at pH 4.5 on crystalline material, which are conditions relevant to developing more efficient commercial processes. Notably, four enzymes showed equal to or higher activity than LCC-ICCG, a benchmark PET hydrolase, at this challenging condition in our screening assay, and 11 of which have pH optima
Product Used
Genes
Related Publications