Publications
Nature plantsSep 2020 |
6
(
9
),
1158-1166
DOI:
10.1038/s41477-020-00762-4

Novel bacterial clade reveals origin of form I Rubisco

Banda, Douglas M; Pereira, Jose H; Liu, Albert K; Orr, Douglas J; Hammel, Michal; He, Christine; Parry, Martin A J; Carmo-Silva, Elizabete; Adams, Paul D; Banfield, Jillian F; Shih, Patrick M
Product Used
Genes
Abstract
Rubisco sustains the biosphere through the fixation of CO2 into biomass. In plants and cyanobacteria, form I Rubisco is structurally comprised of large and small subunits, whereas all other Rubisco forms lack small subunits. The rise of the form I complex through the innovation of small subunits represents a key, yet poorly understood, transition in Rubisco's evolution. Through metagenomic analyses, we discovered a previously uncharacterized clade sister to form I Rubisco that evolved without small subunits. This clade diverged before the evolution of cyanobacteria and the origin of the small subunit; thus, it provides a unique reference point to advance our understanding of form I Rubisco evolution. Structural and kinetic data presented here reveal how a proto-form I Rubisco assembled and functioned without the structural stability imparted from small subunits. Our findings provide insight into a key evolutionary transition of the most abundant enzyme on Earth and the predominant entry point for nearly all global organic carbon.
Product Used
Genes

Related Publications