Publications
Brain pathology (Zurich, Switzerland)Feb 2025 |
e70000
DOI:
10.1111/bpa.70000

Validation of target-enriched enzymatic methylation sequencing for brain tumor classification from formalin-fixed paraffin embedded-derived DNA

Tran, Quynh T; Jia, Sujuan; Alom, Md Zahangir; Wang, Lu; Mullighan, Charles G; Tatevossian, Ruth G; Orr, Brent A
Product Used
Variant Libraries
Abstract
DNA methylation profiling by Illumina methylation array-based methods has revolutionized the molecular classification and diagnosis of brain tumors. A significant barrier to adopting these methods in a clinical environment is the requirement for specialized scanners, which results in high additional costs and a larger laboratory footprint. DNA sequencing-based alternatives are attractive because most clinical molecular pathology laboratories already use sequencers for other molecular assays. This study aimed to compare the utility of the newly developed sequencing-based enzymatic methyl sequencing (EM-seq) method paired with the Twist Human Methylome panel for brain tumor classification with standard Infinium Methylation BeadChip-based methods. We used DNA from fresh-frozen or formalin-fixed, paraffin-embedded (FFPE) brain cancer samples from 19 patients and 1 control sample to construct DNA libraries covering 3.98 million CpG sites. We developed and validated a bioinformatics pipeline to analyze target-enriched EM-seq (TEEM-seq) data in comparison with standard array-based methods for tumor classification and copy number profiling. We found high concordance between TEEM-seq and traditional methods, with high correlation coefficients (>0.98) between FFPE replicates. We successfully classified tumor samples into the expected molecular classes with robust prediction scores (>0.82). We observed that FFPE samples required a sequencing depth of at least 35x to achieve consistently high and reliable prediction scores. The TEEM-seq method has the potential to complement existing tumor classification methods and lower the barriers for the adoption of methylation profiling in routine clinical use.
Product Used
Variant Libraries

Related Publications