Publications
JACS AuSep 2022 |
2
(
9
),
2187-2202
DOI:
10.1021/jacsau.2c00220

Advanced Molecular Tweezers with Lipid Anchors against SARS-CoV-2 and Other Respiratory Viruses

Weil, Tatjana; Kirupakaran, Abbna; Le, My-Hue; Rebmann, Philipp; Mieres-Perez, Joel; Issmail, Leila; Conzelmann, Carina; Müller, Janis A; Rauch, Lena; Gilg, Andrea; Wettstein, Lukas; Groß, Rüdiger; Read, Clarissa; Bergner, Tim; Pålsson, Sandra Axberg; Uhlig, Nadja; Eberlein, Valentina; Wöll, Heike; Klärner, Frank-Gerrit; Stenger, Steffen; Kümmerer, Beate M; Streeck, Hendrik; Fois, Giorgio; Frick, Manfred; Braubach, Peter; Spetz, Anna-Lena; Grunwald, Thomas; Shorter, James; Sanchez-Garcia, Elsa; Schrader, Thomas; Münch, Jan
Product Used
NGS
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 presents a global health emergency. Therapeutic options against SARS-CoV-2 are still very limited but urgently required. Molecular tweezers are supramolecular agents that destabilize the envelope of viruses resulting in a loss of viral infectivity. Here, we show that first-generation tweezers, CLR01 and CLR05, disrupt the SARS-CoV-2 envelope and abrogate viral infectivity. To increase the antiviral activity, a series of 34 advanced molecular tweezers were synthesized by insertion of aliphatic or aromatic ester groups on the phosphate moieties of the parent molecule CLR01. A structure-activity relationship study enabled the identification of tweezers with a markedly enhanced ability to destroy lipid bilayers and to suppress SARS-CoV-2 infection. Selected tweezer derivatives retain activity in airway mucus and inactivate the SARS-CoV-2 wildtype and variants of concern as well as respiratory syncytial, influenza, and measles viruses. Moreover, inhibitory activity of advanced tweezers against respiratory syncytial virus and SARS-CoV-2 was confirmed in mice. Thus, potentiated tweezers are broad-spectrum antiviral agents with great prospects for clinical development to combat highly pathogenic viruses.
Product Used
NGS

Related Publications